[This question paper contains 7 printed pages.]

2137

Your Roll No.

B.Sc. (Hons.) / HI

С

MATHEMATICS - Paper VIII

(Differential Equations and Mathematical Modeling - II)

Time: 3 Hours Maximum Marks: 75

(Write your Roll No. on the top immediately on receipt of this question paper.)

All Sections are compulsory.

Attempt any Two parts from each Section.

SECTION A

 (a) Describe Lagrange's method of solving a quasilinear differential equation of the first order. Use it to solve

$$(u^2 - y^2)u_x + x_y u_y + xu = 0 (6)$$

(b) Solve the initial value problem

 $u_x + 2u_y = 0$, $u(0, y) = 3e^{-2y}$ using the separation of variables. (6)

2

(c) Describe General Integral, Complete Integral and Singular Integral of a first order partial differential equation

$$f(x, y, z, p, q = 0, p = \frac{\partial z}{\partial x}; q = \frac{\partial z}{\partial y}$$
 (6)

SECTION B

2. (a) Derive the continuity equation

$$\rho_t + \operatorname{div}(\rho \vec{\mathbf{u}}) = 0,$$

And Euler's equation of motion

$$\rho[\bar{u}, +(\bar{u}.grad)\bar{u}] + grad \rho = 0$$
in fluid dynamics. (6.5)

- (b) Show that the equation of motion of a long string is $u_1 = e^2u_{xx} g$, where g is the gravitational acceleration. (6.5)
- (c) Find the characteristics, characteristic coordinates and then reduce the equation $x^2u_{xy} 2xyy^2u_{xy} + y^2u_{xy} = e^x$ to the canonical form. (6.5)

SECTION C

3. (a) Obtain the D'Alembert solution of the following initial-value problem

$$u_{tt} = c^{2}u_{xx}, x \in \mathbb{R}, t \ge 0$$

$$u(x, 0) = \sin x, x \in \mathbb{R},$$

$$u_{t}(x, 0) = \cos x, x \in \mathbb{R}.$$
(7)

(b) Find the solution of the characteristic initial-value problem

$$xu_{xx} - x^{2}u_{yy} - u_{x} = 0, x \neq 0$$

 $u(x, y) = f(y) \text{ on } y - \frac{x^{2}}{2} = 0 \text{ for } 0 \le y \le 2$
 $u(x, y) = g(y) \text{ on } y + \frac{x^{2}}{2} = 4 \text{ for } 2 \le y \le 4, \text{ where}$
 $f(2) = g(2).$ (7)

(c) Determine the solution of the initial boundary-value problem:

$$u_{xx} - u_{yy} = 1$$

$$u(x, 0) = \sin(x)$$

$$u_{y}(x, 0) = x$$
(7)

SECTION D

4. (a) Prove that there exists at most one solution of the wave equation

$$u_{xt} = c^2 u_{xx}, \ 0 < x < I, \ t > 0,$$

satisfying the initial conditions

u(x, 0) = f(x), $u_t(x, 0) = g(x)$; $0 \le x \le l$ and the boundary conditions

u(0, t) = 0, u(l, t) = 0, $t \ge 0$ where u(x, t) is a twice continuous differentiable function with respect to both x and y. (7)

(b) The Heat conduction problem of a homogeneous rod of length *l*, where the surface of the rod is insulated to prevent heat loss through the boundary is given by the equation:

$$u_t = ku_{xx}$$
, $0 < x < l$, $t > 0$.

$$u(0, t) = 0, t \ge 0$$

$$u(I, t) = 0, t \ge 0$$

$$u(x, 0) = f(x), 0 \le x \le L$$

Show that the formal series solution of this problem is given as

$$u(x,t) = \sum_{n=1}^{\infty} a_n e^{-\left(\frac{n\pi}{l}\right)^2 kt} \sin\left(\frac{n\pi x}{l}\right) \text{ where}$$

$$a_n = \frac{2}{l} \int_0^l f(x) \sin\left(\frac{n\pi x}{l}\right) dx \tag{7}$$

(c) Determine the solution of the initial-boundary value problem:

$$u_{tt} - u_{xx} = h, \ 0 \le x \le 1, \ t \ge 0, \ h \text{ is a constant.}$$

$$u(x, 0) = x(1 - x), \ 0 \le x \le 1$$

$$u_{t}(x, 0) = 0, \qquad 0 \le x \le 1$$

$$u_{t}(0, t) = t, \ u(1, t) = \sin t, \ t \ge 0$$
(7)

SECTION E

5. (a) Using Monte Carlo simulation, write an algorithm to calculate the volume of a sphere:

$$x^2 + y^2 - z^2 = 1$$
, that lies in the first octant $y \ge 0$, $y \ge 0$, $z \ge 0$. (6)

(b) Explain linear congruence method for generating random numbers. Does this method have any draw back? Illustrate with the help of an example.

(6)

(c) Solve the Linear Programming Problem:

Minimize: $x_1 - 2x_2$ subject to

$$3x + 2x_{\frac{1}{2}} \le 3$$

$$x - x_{2} \le 2$$

$$x + x_{2} \ge 0.$$
(6)

SECTION F

- 6. (a) Prove that a connected graph is semi-Fulerian if and only if it has exactly two vertices of odd degree. (5)
 - (b) Prove that if G is an r-regular graph with n vertices, then G has exactly $\frac{nr}{2}$ edges. (5)
 - (c) Consider the graph G as follows:

Which of the following statement hold for G? Justify.

- (i) Vertices v and x are adjacent.
- (ii) Edge 6 is incident with vertex w.
- (iii) Vertex x is incident with edge 4.
- (iv) Vertex w and edge 5 and 6 form a subgroup of G. (5)