This question paper contains 8+3 printed pages]

Your Roll No.....

2142

B.Sc.(Hons.)/H1 C

MATHEMATICS- Paper XII (ii)

(Discrete Mathematics)

(Admissions of 2009 and onwards)

Time: 3 Hours Maximum Marks: 75

(Write your Roll No on the top immediately on receipt of this question paper.)

4ll vix questions are compulsory.

Do any two parts from each question.

- I. (a) Let P and Q be ordered sets. Prove that (a_1, b_1) (a_2, b_2) in P × Q if and only if $(a_1 = a_2)$ and (a_1, b_2) or (a_1, b_2) or (a_1, b_2) and (a_1, b_2) or (a_1, b_2) or (a_1, b_2) and (a_1, b_2) or (a_1, b_2) or (a_1, b_2) and (a_1, b_2) or (a_1, b_2) or (a_1, b_2) and (a_1, b_2) or (a_1, b_2) or (a_1, b_2) and (a_1, b_2) and (a_1, b_2) or (a_1, b_2) and (a_1, b_2) and (a_1, b_2) or (a_1, b_2) or (a_1, b_2) and (a_1, b_2) or (a_1, b_2) and (a_1, b_2) or (a_1, b_2) or (a_1, b_2) and (a_1, b_2) or (a_1, b_2) or (a_1, b_2) and (a_1, b_2) or (a_1, b_2) or (a_1, b_2) and (a_1, b_2) or (a_1, b_2) or (a_1, b_2) and (a_1, b_2) or (a_1, b_2) or (a_1, b_2) and (a_1, b_2) or (a_1, b_2) or (a_1, b_2) or (a_1, b_2) and (a_1, b_2) or (a_1, b_2) or (a_1, b_2) and (a_1, b_2) or (a_1, b_2) or
 - (b) (i) Let P be an ordered set and $x, y \in P$. Prove that the following are equivalent:

I.
$$x \leq y$$
;

II.
$$\downarrow x \subseteq \downarrow y$$
;

III.
$$(\forall Q \in O(P)) \ y \in Q \Rightarrow x \in Q$$
.

- (ii) Draw the diagram of $M_3 \times 2$, where 2 denotes chain of two elements.
- (c) (i) Let f be a monomorphism from the lattice L into the lattice M. Show that L is isomorphic to a sublattice of M.
 - (ii) Let P be an ordered set and S, T \subseteq P. Assume that \vee S, \vee T, \wedge S and \wedge T exist in P. Prove that if S \subseteq T, then \vee S \leq \vee T and \wedge S \geq \wedge T. 4, 2
- 2. (a) Let B be a Boolean algebra. Prove that an ideal M in B is maximal if and only if for any $b \in B$, either $b \in M$ or $b' \in M$, but not both, hold. $6\frac{1}{2}$

(b) (i) Find the conjunctive normal form of

$$(x_1 + x_2 + x_3) (x_1x_2 + x_1'x_3)'$$
.

(ii) Let L be a lattice. Prove that the following are equivalent:

(D)
$$(\forall a, b, c \in L), a \land (b \lor c) - (a \land b) \lor (a \land c);$$

$$(\mathsf{D})' + \forall p,\, q,\, r \in \mathsf{L}), p \vee (q \wedge r) = (p \vee q) \wedge (p \vee r).$$

31/2,3

(c) (i) Use Karnaugh diagram to simplify the following polynomial:

$$p = (x_1 + x_2)(x_1 + x_3) + x_1 x_2 x_3.$$

(ii) Determine the symbolic representation of the circuit given by :

$$p = (x_1 - x_3)^t (x_1' + (x_2 - x_3)(x_2' + x_3'))$$
 using six gates.

4) 2142

 (a) (i) Define subgraph of a given graph. For each of the graphs below, draw pictures of the subgraphs

$$G \setminus \{e\}, G \setminus \{v\}, G \setminus \{u\}$$

(ii) Show that the following graphs are isomorphic:

(b) Find the adjacency matrices A_1 and A_2 of the graphs G_1 and G_2 given below. Find a permutation matrix 'P' such that $A_2 = PA_1P^T$.

(c) Apply first form of Dijkstra's algorithm to find the shortest path from A to E in the following graph. Write steps.

4. (a) Let A be the adjacency matrix of the digraph: 6

(i) Find A;

- (ii) Is the digraph strongly connected? Explain.
- (iii) Is the digraph Eulerian? Explain.
- (b) Prove that a tree with more than one vertex has at least two leaves. Hence prove that any edge added to a tree must produce a cycle.
- (c) Solve the Chinese Postman problem for the following graph:

(8)

5. (a) Let G be a connected planar graph with $V \ge 3$ vertices and E edges. Then prove that $E \le 3V - 6$. Hence show that K_5 is not planar.

(b) (i) Compute $\chi(G)$ for the graph shown. Explain your answer and exhibit a $\chi(G)$ coloring.

(ii) Is $\chi(K_{m,n})$ the minimum of m and n? Give reasons.

(c) Find the maximum flow for the network shown and verify the answer by finding a cut whose capacity equals the value of the flow.

6. (a) (i) Define $S^{-1}a$, ∇a and Δa . For the numeric function 'a' given by

$$a_r = \begin{cases} 0, & 0 \le r \le 2 \\ 2^{-r} + 5, & r \ge 3 \end{cases}$$

show that $S^{-1}(\nabla a) = \Delta a$

(ii) Let 'a' and 'b' be the numeric functions such that :

$$a_r = 2^r, r \ge 0$$

and
$$b_r = \begin{cases} 0, & 0 \le r \le 2 \\ 2^r, & r \ge 3 \end{cases}$$

Find the convolution a * b. $3\frac{1}{2}, 3$

- (b) (i) Find a simple expression for the generating function of the discrete numeric function 0×1, 1×2, 2×3, 3×4...
 - (ii) Determine the discrete numeric function corresponding to the generating function :

$$A(z) = \frac{1}{5 - 6z + z^2}.$$
 31/2,3

(11) 2142

(c) (i) The solution of the recurrence relation

$$a_r = Aa_{r-1} + B3^{r-1}, r \ge 1$$
 is $a_r = C2^r + D3^{r-1}, r \ge 0$.

Given that $a_0 = 19$ and $a_1 = 50$, determine the constants A, B, C and D

(ii) Solve the recurrence relation $a_r + 6a_{r-1} + 9a_{r-2} = 3$, given that $a_0 = 0$ and $a_1 = 1$.

31/2,3

2142 11 1,000