This question paper contains 4+1 printed pages]

Your Roll No.....

6102

B.Sc. (Hons.)/Sem. I B

MATHEMATICS—Paper 1.2

(Analysis—I)

(Admissions of 2011 and onwards)

Time: 3 Hours Maximum Marks: 75

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt any two parts from each question.

Use of basic Calculator is allowed.

- 1. (a) Let a, b, c be any elements of R. Show that :
 - (i) If a > b and b > c, then a > c.
 - (ii) If a > b, then $a + c > b^c + c$.
 - (iii) If $a \ge b$ and $c \ge 0$, then $ca \ge cb$.

.

P.T.O.

(b) Find all $x \in \mathbf{R}$ that satisfy the inequality:

$$|4 < |x + 2| + |x - 1| < 5.$$

- (c) If y > 0, show that there exists $n \in \mathbb{N}$ such that $1/2^n < \hat{y}$. Justify each step by referring to an appropriate property or theorem.
- 2. (a) State and prove the Density Theorem.
 - (b) State the Completeness Property of R. Show that if A and B are bounded subsets of R, then:

$$sup(A \cup B) = sup\{sup A, sup B\}.$$

(c) Show that intersection of any arbitrary collection of closed sets in R is closed. Show, by an example, that

union of infinitely many closed sets in R used not be

3. (a) Prove that a sequence in R can have at most one

limit.

closed.

3) 6102

(b)·	Suppose every	subsequence	of X	$=(x_n)$	has a	sub	se-
	•						•
	quence that co	inverges to 0.	Show	that li	m X =	Ò.	5

- (c) Let $x_1 > 1$ and $x_{n+1} = 2 \frac{1}{x_n}$ for $n \in \mathbb{N}$. Show that (x_n) is bounded and monotone. Find its limit.
- 4. (a) Show that the sequence $(a_n) = ((-1)^n)$ does not converge.
 - (b) Let (s_n) be a sequence in R. Prove that $\lim_{n \to \infty} (s_n) = 0$ if and only if $\lim_{n \to \infty} (|s_n|) = 0$.
 - (c) Let (s_n) be a sequence that converges. Show that if $s_n \ge a$ for all but finitely many n, then $\lim_{n \to \infty} (s_n) \ge a$. 5
- 5. (a) (i) Let $X = (x_n)$ be a bounded increasing sequence. Show that X is convergent and:

$$\lim (x_n) = \sup\{x_n : n \in \mathbb{N}\}$$

(ii) Show that
$$\lim_{n \to \infty} (\sqrt{n} + 7) = +\infty$$
. $2\frac{1}{2}$

- (b) (i) Let $X=(x_n)$ be a sequence of real numbers that converges to x and suppose that $x_n \geq 0$. Show that the sequence $\left(\sqrt{x_n}\right)$ of positive square roots converges and $\lim_{n \to \infty} \left(\sqrt{x_n}\right) = \sqrt{x}$.
 - (ii) Let (s_n) and (t_n) be the following sequences that repeat in cycles of four:

$$(s_n) = (0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 2, 1, \dots)$$

$$(t_n) = (2, 1, 1, 0, 2, 1, 1, 0, 2, 1, 1, 0, \dots)$$

Find $\lim \inf (s_n + t_n)$ and $\lim \sup (s_n + t_n)$. 2½

(c) (i) Define a Cauchy sequence. Show that the sequence:

$$\left(\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}\right)$$

is divergent.

(ii) Using squeeze theorem or otherwise, determine the limit of the sequence (n^{1/n^2}) . $2\frac{1}{2}$

- 6. (a) State and prove the comparison test for series. 5
 - (b) Test the convergence of:

(i)
$$\sum \frac{1}{2^n + n}$$

$$(ii) \qquad \sum \frac{(-1)^n n!}{2^n}.$$

- (c) Give an example of a convergent series $\sum a_n$ for which $\sum a_n^2$ diverges. Also, give an example of a divergent series $\sum a_n$ for which $\sum a_n^2$ converges. Justify your answers.
- 7. (a) State and prove the Alternating Series Theorem.
 - (b) Test the convergence of:

(i)
$$\sum_{n=4}^{\infty} \frac{1}{n(\log n) (\log \log n)}$$

(ii)
$$\sum \frac{(-1)^n}{n}.$$

(c) Show that if $\sum a_n$ converges, then $\lim a_n = 0$. Show, by an example, that the converse is not true.

6102