This ques	tion pape	er cont	ains 4 p	orinted j	pages]									
					•	Ro	ll No			Ī				
S. No. of C	Question l	Paper	: 8802			•				•				•
Unique Paper Code : 235103										C				
Name of th	he Paper		: I.2 (A	Analysi	s-I) (A	.dmissi	ions of	2011	and o	nwai	·ds)			
Name of th	he Course	;	: B.Sc	. (Hons	.)/Mat	ths. Pa	rt I							
Semester			: I											,
Duration: 3 Hours										Max	ximu	ım Ma	rks : 75	
	(Write yo	our Ro	ll No. oi	the to	p imme	ediately	on re	ceipt c	f this	ques	tion	pape	r.)	
		•	Attem	pt any	two pa	arts fro	m eac	h que	stion.					-
				<i>All</i> qu	estions	are co	ompul	sory.		•				
1. (a)	. State ar	nd pro	ve trian	gle inec	quality	and sl	now th	at:		•				5
		a - b	$ a \leq a $	- b , \	d a, b	∈ R				•				
(b)	Define are:	boune	ded abo	ove and	l bour	nded t	elow	sets.	Give	exar	nple	s of	sets	which
	(i) B	ounde	d above	but no	t boun	nded b	elow.							
	(ii) B	ounde	d below	bùt no	t bour	nded a	bove.							
	(iii) N	either	bounde	d abov	e nor t	bounde	ed belo	w.						5
(c)														
	z such	that x	: < z <	у.					0	٠				5
2. (a)	(<i>i</i>) G	iven S	$s = \begin{cases} 1 \end{cases}$	$+\frac{1}{n}:n$	$i \in N$, shov	w that	inf S	= 1.					21/2

(ii) Given $A = \left\{1 - \frac{1}{n} : n \in \mathbb{N}\right\}$, show that sup A = 1.

P.T.O.

2½

(b) Suppose A and B are two non-empty bounded subsets of R, and

$$A + B = \{a + b : a \in A, b \in B\}.$$

Prove that:

$$\sup (A + B) = \sup A + \sup B.$$

- (c) Define cluster point of a set of real numbers and show that $A = \left\{ \frac{1}{n} : n \in \mathbb{N} \right\}$ is not a closed set but $A \cup \{0\}$ is closed.
- 3. (a) (i) Write x_5 , x_{11} , x_{16} and x_{50} for the sequence (x_n) where : 2 $x_n = 3 + 2(-1)^n, n \in \mathbb{N}.$
 - (ii) Prove that:

$$\lim \left(\frac{2n}{2n+1}\right) = 1$$
 by using the definition of limit of a sequence.

(iii) Show that
$$\lim_{n \to \infty} \left(\frac{\sin_n n}{n} \right) = 0.$$
 2½

(b) (i) Determine limit of sequence
$$\left(\left(1+\frac{1}{2n}\right)^{3n}\right)$$
.

(ii) If 0 < b < 1, then show that $\lim_{n \to \infty} (b^n) = 0$. Further determine

$$\lim \left(\frac{a^{n+1}+b^{n+1}}{a^n+b^n}\right) \text{ for } 0 < a < b.$$

- (c) (i) Show that every convergent sequence is bounded. Is the converse true? Justify your answer.
 - (ii) Suppose (x_n) and (y_n) are two sequences such that: $|x_n| \le y_n$, for all $n \in \mathbb{N}$, and $\lim_{n \to \infty} (y_n) = 0$, then prove that $\lim_{n \to \infty} (x_n) = 0$. $2\frac{1}{2}$

- 4. (a) State Monotone Convergence Theorem and show that sequence (x_n) where $x_1 = 1$ and $x_{n+1} = \sqrt{2 + x_n}$, for all $n \ge 1$ is convergent.
 - (b) Using definition of Cauchy sequence, prove that sequence $\left(\frac{1}{n}\right)$ is a Cauchy sequence but the sequence $\left(n + \frac{(-1)^n}{n}\right)$ is not Cauchy.
 - (c) Prove that a sequence of real numbers is convergent if and only if it is a Cauchy sequence.
- (a) Suppose X = (x_n) is a bounded sequence of real numbers and let x ∈ R have the property that every convergent subsequence of X converges to x. Then prove that the sequence X converges to x.
 - (b) (i) State Bolzano-Weierstrass Theorem for sequences. Give an example of an unbounded sequence that has a convergent subsequence.
 - (ii) Find lim sup and lim inf of sequences $(n^{1/n})$ and $(5^{(-1)^n})$.
 - (c) (i) Give an example of a sequence (x_n) which is not bounded below but $\limsup x_n = 50$.
 - (ii) For the sequence $a_n = [n + (-1)^n]$, $n \in \mathbb{N}$, find its set of subsequential limits.
- 6. (a) State Cauchy criteria for convergence of a series of real numbers and hence show that the series $\sum \frac{1}{n}$ is not convergent.
 - (b) State Root Test for series of real numbers and show that the series $\sum \left(\sin\frac{n\pi}{3}\right)^n$ is convergent, but Root Test gives no information for the series $\sum \left(\sin\frac{n\pi}{2}\right)^n$. 5 P.T.O.

- (c) Examine the following series for convergence:
 - (i) $\sum \frac{(100)^n}{n!}$

(ii)
$$\sum \left[\sqrt{n+1} - \sqrt{n} \right]$$
 2½

- 7. (a) Suppose Σ a_n is a series where $a_n \ge 0 \ \forall \ n$ and $|b_n| \le a_n \ \forall \ n$. Then prove that Σ a_n is convergent implies Σ b_n is convergent. Is the series $\sum \left(\frac{2 + \cos n}{3^n}\right)$ convergent? Justify your answer.
 - (b) Give an example of a series which is convergent but not absolutely convergent. Justify your answer and show that $\sum \frac{(-1)^n \sin n\alpha}{n^3}$ is absolutely convergent.
 - (c) Examine the convergence of the following series:
 - (i) $\sum \frac{(-1)^n}{\sqrt{n}}$ 2½

(ii)
$$\sum \left[\frac{2}{(-1)^n-3}\right]^n$$
. 2½