		•			
This question	paper	contains	7	printed	pages

Roll	No.					

S. No. of Question Paper: 8803

Unique Paper Code

: 235104

C

Name of the Paper

: I.3: Algebra-I

Name of the Course

: B.Sc. (H) Mathematics (Part I)

Semester

• Т

Duration: 3 Hours

Maximum Marks: 75

(Write your Roll No. on the top immediately on receipt of this question paper.)

All six questions are compulsory.

Do any two parts from each question.

- 1. (a) Let u, v, w be the zeros of the cubic polynomial $4t^3 7t^2 3t + 2$. Determine a cubic polynomial whose zeros are $u \frac{1}{vw}, v \frac{1}{uw}, w \frac{1}{uv}$.
 - (b) (i) Prove that the equation $t^7 5t^5 4t + 3 = 0$ cannot have more than two positive roots. Show that it has at least four complex roots.
 - (ii) Estimate an upper bound for the real zeros of

$$p(t) = t^7 - t^6 + t^5 + 2t^4 - 3t^3 + 4t^2 + t - 2$$

State the result used.

3,3

(c) (i) Consider the polynomial equation

$$t^4 + pt^3 + qt^2 + rt + s = 0.$$

Prove that if the sum of two of its roots is equal to the sum of the other two, then $p^3 + 8r = 4pq$.

(ii) Find the polar representation for the complex number

$$z = 1 - \cos a + i \sin a, a \in [0, 2\pi)$$
.

2. (a) Solve the equation:

$$z^4 = 5(z-1)(z^2-z+1) 6.5$$

(b) (i) Compute:

$$z = \frac{(1-i)^{10} \left(\sqrt{3}+i\right)^{5}}{\left(-1-i\sqrt{3}\right)^{10}}.$$

- (ii) Let z_1, z_2, z_3 be the coordinates of vertices A, B, C of a triangle. If $w_1 = z_1 z_2$ and $w_2 = z_3 z_1$, prove that $\hat{A} = 90^\circ$ iff $Re(w_1 \cdot \overline{w}_2) = 0$. 3,3.5
- (c) (i) Find all complex numbers z such that |z| = 1 and $\left| \frac{z}{\overline{z}} + \frac{\overline{z}}{z} \right| = 1$.

(ii) Consider three distinct points $M_1(z_1), M_2(z_2)$ and $M_3(z_3)$, where $z_1 = 4 + 3i$, $z_2 = 4 + 7i, z_3 = 8 + 7i$.

Find the measure of the oriented angles $M_3\hat{M}_1M_2$ and $M_2\hat{M}_1M_3$. 3.5,3

- 3. (a) Let $a, b \in \mathbb{Z}$. Define $a \sim b$ if $a \equiv b \pmod{n}$.
 - (i) Prove that ~ defines an equivalence relation on Z.
 - (ii) If n = 7, find the equivalence classes of 4 and -4.
 - (iii) What is the quotient set determined by this equivalence relation for n = 7?
 - (b) (i) Define floor and ceiling function on R. At what values of x do the jumps in the graph of y = |2x 3| occur?
 - (ii) Show that $|\mathbf{Z}| = \aleph_0$.
 - (c) (i) Show that the functions $f: \mathbb{R} \to (1, \infty)$ and $g: (1, \infty) \to \mathbb{R}$ defined by $f(x) = 3^{2x} + 1, \ g(x) = \frac{1}{2} \log_3(x-1) \text{ are inverses.}$

- (ii) Let \sim define an equivalence relation on a set A and $a, b \in A$. Prove that $a \sim b$ if and only if [a] = [b].
- 4. (a) Prove that the intervals (3, 5) and $(9, \infty)$ have the same cardinality.
 - (b) Let $(a, b) \sim (c, d)$ in \mathbb{R}^2 if and only if ab = cd. Prove that \sim defines an equivalence relation on \mathbb{R}^2 . Give the geometrical interpretations of the equivalence classes of (0, 0) and (1, 1).
 - (c) (i) Show that the function $f: A \to \mathbb{R}$ defined by $f(x) = 5 \frac{1}{1+x}$, where $A = \{x \in \mathbb{R}/x \neq -1\}$ is one to one. Find the range of f and a suitable inverse.
 - (ii) Let A and B be non-empty sets. Prove that $A \times B = B \times A$, if and only if A = B.
- 5. (a) Determine the general solution of the following system in parametric vector form:

$$x-2y+9z+5w=4$$

$$x-y+6z+5w=-3$$

$$-2x-6z+w=-2$$

$$4x+y+9z+w=-9$$
7.5

(b) (i) Let T be a linear transformation whose standard matrix is:

$$A = \begin{bmatrix} -5 & 10 & -5 & 4 \\ 8 & 3 & -4 & 7 \\ 4 & -9 & 5 & -3 \\ -3 & -2 & 5 & 4 \end{bmatrix}.$$

Is T a one-to-one mapping? Does T maps R⁴ onto R⁴?

- (ii) Define subspace of \mathbb{R}^n . Prove that the null space of an $n \times n$ matrix A is a subspace of \mathbb{R}^n .
- (c) Find the general traffic pattern in the freeway network shown in the figure below. (Flow rates are in cars/minute). Describe the general traffic pattern when the road whose flow is x_4 is closed.

 7.5

6. (a) (i) Define basis and dimension of a subspace H of \mathbb{R}^n . Is

$$H = \{(a,b,c,d) / a = b + c + d\}$$

a subspace of R⁴ ? Justify.

(ii) Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be a linear transformation such that :

$$T(x_1, x_2) = (x_1 - 2x_2, -x_1 + 3x_2, 3x_1 - 2x_2)$$

Find x such that T(x) = (-1,4,9). Also find the standard matrix of T. 4, 3.5

(b) Find the bases and dimensions for Col A and Nul A where

$$A = \begin{bmatrix} 1 & -2 & 9 & 5 & 4 \\ 1 & -1 & 6 & 5 & -3 \\ -2 & 0 & -6 & 1 & -2 \\ 4 & 1 & 9 & 1 & -9 \end{bmatrix}.$$

(c) (i) Let

$$v_{1} = \begin{bmatrix} 1 \\ 0 \\ -1 \\ 0 \end{bmatrix}, v_{2} = \begin{bmatrix} 0 \\ -1 \\ 0 \\ 1 \end{bmatrix}, v_{3} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ -1 \end{bmatrix}$$

Does $\{v_1, v_2, v_3\}$ span R^4 ? Give reasons.

(ii) Let $T(x_1, x_2) = (3x_1 + x_2, 5x_1 + 7x_2, x_1 + 3x_2)$. Show that T is a one-to-one linear

transformation. Does T maps R2 onto R3?

3.5,4