Sl. No. of Ques. Paper

: 401 C

Unique Paper Code

: 222181

Name of Paper

: Physics - I

Name of Course

: B.Sc. (Hons) Maths. / B.Sc. (Mathematical Science)

Semester

: I

Duration: 3 hours

Maximum Marks: 75

Attempt five questions in all. Question No. 1 is compulsory. Select at least two questions from each of Sections A and B.

1 Attempt any five:

3x5=15

- (a) Determine a unit vector perpendicular to plane containing $\mathbf{a} = 2\mathbf{i} 6\mathbf{j} 3\mathbf{k}$ $\mathbf{b} = 4\mathbf{i} + 3\mathbf{j} \mathbf{k}$
- (b) Prove: $(AxB)\cdot(CxD)=(A\cdot C)(B\cdot C)-(B\cdot C)(A\cdot D)$
- (c) Show that gradient of field describing motion is irrotational
- (d) $div(sA) = s divA + A \cdot grad s$
- (e) Show that $A = (6xy + z^3)\mathbf{i} + (3x^2 z)\mathbf{j} + (3xz^2 y)\mathbf{k}$ is irrotational.
- (f) Show that $\mathbf{F} = (2xy + z^3)\mathbf{i} + x^2\mathbf{j} + 3xz^2\mathbf{k}$ is a conservative force field. Find the scalar potential
- (g) State Stokes' theorem. Write it in rectangular form.

Section A

2 (a) Find the resultant of two S.H.M. of equal period, when they are perpendicular to one another. Discuss different cases.

10

(b) A mass of 25x10⁻³ kg is suspended from the lower end of the vertical spring having a force constant 25 N/m. The mechanical resistance of the system is 1.5 N/m. The mass is displaced vertically and released. Find whether the motion is oscillatory? If so calculate the period of oscillation.

5

3 (a) Define moment of inertia. State and prove theorem of perpendicular axis.

5

	(b)	Find the moment of inertia of an annular circular lamina about an axis along its diameter.	
4	(a)	What are elastic and inelastic collision? Discuss elastic collision in one dimension for two particles.	6
	(b)	A particle of mass m_1 experiences a perfectly elastic collision with a stationary particle of mass m_2 . Determine the ratio of m_1/m_2 if after a headon collision the particles fly apart in opposite directions with equal velocities.	5
	(c)	Calculate the group velocity when the two waves $Y_1 = 10 \sin (2\pi t - 5x)$ $Y_2 = 15 \sin (5\pi t + 5x)$ Superimpose. Y_1 and Y_2 are in meters.	. 4
		Section B	
5	(a)	What is interference? Give the necessary conditions to obtain sustainable and discernable interference fringes.	1+4
	(b)	Derive an expression for optical path difference in thin films due to reflected light. Obtain the conditions for maxima and minima.	4+4
	(c)	Explain the colours in thin films.	2
6	(a)	Distinguish between Fresnel and Fraunhofer class of diffraction.	2
	(b)	Give construction and theory of plane transmission grating. Discus the intensity distribution.	7+3
	(c)	Show that the resolving power of grating is proportional to the order of diffraction.	3
7	(a)	What do you understand by polarization of light? How do you obtain plane polarized light by reflection and refraction?	1+6
	(b)	State and explain Brewster's Law.	2
	(c)	What are quarter and half wave plates? Discuss one application of each	6

10