[This question paper contains 4 printed pages.]

Sr. No. of Question Paper	:	6604	D	Your Roll No
Unique Paper Code	:	235104		
Name of the Course	:	B.Sc. (Hons.) Math	ematics – I	
Name of the Paper	:	Algebra – I		
Semester	:	I		
Duration : 3 Hours				Maximum Marks : 75

Instructions for Candidates

1. Write your Roll No. on the top immediately on receipt of this question paper.

- 2. All six questions are compulsory.
- 3. Do any two parts from each question.

1. (a) Suppose a complex polynomial p(t) can be factored in two ways as

$$p(t) = \prod_{i=1}^{m} (t - a_i) = \prod_{j=1}^{n} (t - b_j)$$

Show that m = n and that the a_i 's are the same as the b_j 's in some order. (6)

- (b) Use Descarte's rule of signs to verify that t¹¹ + t⁸ 3t⁵ + t⁴ + t³ 2t² + t 2 has at most 5 positive and two negative zeroes. Deduce that it has at least 4 nonreal zeroes.
 (6)
- (c) (i) Consider the polynomial equation

$$x^4 + px^3 + qx^2 + rx + s = 0$$

Prove that the product of two of its roots is equal to the product of the other two if and only if $r^2 = p^2 s$.

(ii) Find the polar representation of the complex number $z = -1 + i\sqrt{3}$ and write its extended argument. (4,2)

P.T.O.

6604

2. (a)

- (i) Suppose $z_1 = 1 + i$ and $z_2 = -1 + i$. Find measures of angles M_1OM_2 and M_2OM_1 , where M_1 represents z_1 and M_2 represents z_2 .
- (ii) Let z_1, z_2, z_3 be the coordinates of the vertices A_1, A_2, A_3 of a positively oriented triangle, prove that triangle $A_1A_2A_3$ is an equilateral triangle if and only if

$$z_3 - z_1 = \varepsilon (z_2 - z_1)$$
, where $\varepsilon = \cos \frac{\pi}{3} + i \sin \frac{\pi}{3}$. (2.5,4)

- (b) Solve the equation $z^6 + iz^3 + i 1 = 0.$ (6.5)
- (c) Find |z| and arg z for

$$z = \frac{(-1+i)^4}{\left(\sqrt{3}-i\right)^{10}} + \frac{1}{\left(2\sqrt{3}+2i\right)^4}$$
(6.5)

- 3. (a) State second principle of mathematical induction and use it to prove that every integer greater than 1 is either a prime or a product of primes. (5)
 - (b) (i) For a, $b \in \mathbb{R}$, define a ~ b if and only if $a b \in \mathbb{Z}$.
 - (I) Prove that ~ defines an equivalence relation on \mathbb{R} .
 - (II) Find the equivalence classes of 5 and $\frac{1}{2}$.
 - (ii) Determine whether the following relation R is a function with domain $\{1,2,3,4\}$

$$\mathbf{R} = \{(1,1), (2,1), (3,1), (4,1), (3,3)\}.$$
(4,1)

(c) Define a function g : Z → Z by g(x) = 2x² + 7x. Is g one to one and / or onto ? Explain.

4. (a) Show that the function f: A→ R given by f(x) = 1 + 1/(x-4) is one to one, where A = {x ∈ R / x ≠ 4}. Find the range of f and a suitable inverse.
(5)

(b) (i) Prove that the intervals (-1, 2) and (4, 6) have the same cardinality.

- (ii) Prove or disprove : If A ⊊ B, then A and B do not have the same cardinality. (4,1)
- (c) (i) Find the gcd of 630 and 196 using division algorithm method and hence write gcd (630, 196) as a linear combination of the two numbers.

(ii) Does
$$7 \in [-13] \pmod{5}$$
? Give reasons. (4,1)

5. (a) Let $A = \begin{pmatrix} 1 & -4 & 2 \\ 0 & 3 & 5 \\ -2 & 8 & -4 \end{pmatrix}$ and $b = \begin{pmatrix} 3 \\ -7 \\ -3 \end{pmatrix}$. Determine if b is a linear combination

of the vectors formed from the columns of matrix A. (7.5)

(b) Balance the following chemical equation by solving a suitable system of linear equations,

$$C_3H_8 + O_2 \rightarrow CO_2 + H_2O_3$$

That is when propane gas burns, propane (C_3H_8) combines with oxygen (O_2) to form carbon dioxide (CO_2) with water (H_2O) . (7.5)

(c) (i) Determine by inspection whether the following vectors are linearly independent. Justify your answer. Where $v_1 = \begin{pmatrix} 3 \\ 5 \\ -1 \end{pmatrix}$, $v_2 = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$, $v_3 = \begin{pmatrix} -6 \\ 5 \\ -4 \end{pmatrix}$.

(ii) Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation such that $T(x_1, x_2) = (x_1 + x_2, 4x_1 + 5x_2)$. Find x such that T(x) = (3, 8). (3,4.5)

$$\mathbf{A} = \begin{pmatrix} 1 & 0 & -2 \\ -3 & 1 & 4 \\ 2 & -3 & 4 \end{pmatrix}$$

using E-Row operation method.

P.T.O.

6604

(ii) Let T : R² → R² be a vertical shear transformation that maps e₁ into e₁ -2e₂ but leaves the vector e₂ unchanged. Find the standard matrix of T. (4.5,3)

(b) (i) The vector
$$\mathbf{x} = \begin{pmatrix} -7 \\ 5 \end{pmatrix}$$
 is in a subspace of H with the basis $\mathbf{B} = \{\mathbf{b}_1, \mathbf{b}_2\}$,
where $\mathbf{b}_1 = \begin{pmatrix} 1 \\ -3 \end{pmatrix}$, $\mathbf{b}_2 = \begin{pmatrix} -3 \\ 5 \end{pmatrix}$. Find the B-coordinate vector of x.

- (ii) Suppose a 3×5 matrix A has three pivot columns. Is Col A = \mathbb{R}^3 ? Is Nul A = \mathbb{R}^2 ? Explain your answer. (3.5,4)
- (c) Define Nul A and Col A for a matrix A. Find a basis and dimension for the

column space of the matrix
$$A = \begin{pmatrix} -3 & 9 & -2 & -7 \\ 2 & -6 & 4 & 8 \\ 3 & -9 & -2 & 2 \end{pmatrix}$$
. (7.5)