[This question paper contains 4 printed pages.]

Sr. No. of Question Paper	:	6601	D	Your Roll No	
Unique Paper Code	:	235101			
Name of the Course	:	B.Sc. (H) Mathema	tics – I		
Name of the Paper	:	Calculus – I / Pape	r Code :	MAHT 101	
Semester	:	I			
Duration : 3 Hours				Maximum Marks : 75	

Instructions for Candidates

1. Write your Roll No. on the top immediately on receipt of this question paper.

- 2. All the sections are compulsory.
- 3. Use of non-programmable scientific calculator is allowed.
- 4. All question carry equal marks.

SECTION - I

Attempt any four questions from Section-I.

- 1. If $y = (\sin^{-1} x)^2$, Prove that $(1 x^2)y_{n+2} (2n + 1)xy_{n+1} n^2y_n = 0$.
- 2. Find constants a and b that guarantee that the graph of the function defined by

 $f(x) = \frac{ax + 5}{3 - bx}$ will have a vertical asymptote at x = 5 and a horizontal asymptote at y = -3.

3. Find all values of A and B so that $\lim_{x\to 0} \left(\frac{\sin Ax + Bx}{x^3} \right) = 36.$

•

4. It is projected that t years from now the population of a certain country will be $P(t) = 50e^{0.02t}$ million.

P.T.O.

6601

- (a) At what rate will the population be changing with respect to time 10 years from now ?
- (b) At what percentage rate will the population be changing with respect to time t years from now ?
- 5. Sketch the curve $r = 3\sin 2\theta$ in polar coordinates.

SECTION – II

Attempt any four questions from Section-II.

6. Evaluate $\int_{0}^{\pi/3} \sin^4 3\theta \cos^3 3\theta \, d\theta$.

- 7. Find the volume of the solid that results when the region enclosed by $x = y^2$ and x = y is revolved about the line y = -1.
- 8. Find the volume of the solid generated when the region enclosed by $y = 9 x^2$, y = 0 is revolved about the x-axis.
- 9. Find the arc length of the parametric curve $x = \cos 2t$, $y = \sin 2t$ for $0 \le t \le \pi/2$.
- 10. Find the area of the surface generated by revolving the curve $x = y^3$, $0 \le y \le 1$ about y-axis.

SECTION – III

Attempt any three questions from Section-III.

11. Find an equation for a hyperbola that satisfies the condition that the curve has vertices $(\pm 2,0)$, and foci $(\pm 3,0)$.

- 12. Describe the graph of the equation $x^2 + 9y^2 + 2x 18y + 1 = 0$.
- 13. Trace the conic xy + 9 = 0 by rotating the coordinate axes to remove the xy term.
- 14. Find a polar equation for the ellipse that has its focus at the pole and satisfies the condition that 'directrix to the right of the pole; a = 8; e = 1/2'.

SECTION – IV

Attempt any four questions from Section-IV.

- 15. Find $\lim_{t\to 0} \vec{F}(t)$, where $\vec{F}(t) = \left[\frac{\sin t}{t}\hat{i} + \frac{1-\cos t}{t}\hat{j} + e^{1-t}\hat{k}\right]$.
- 16. A shell is fired at ground level with a muzzle speed of 280 ft/s and at an elevation of 45° from the ground level.
 - (a) Find the maximum height attained by the shell.
 - (b) Find the time of flight and the horizontal range of shell.
 - (c) Find the velocity and speed of the shell at impact.
- 17. Find the position vector $\vec{R}(t)$ and velocity vector $\vec{V}(t)$, where the acceleration vector $A(t) = t^2\hat{i} - 2\sqrt{t}\hat{j} + e^{3t}\hat{k}$, initial position $R(0) = 2\hat{i} + \hat{j} - \hat{k}$ and initial velocity $V(0) = \hat{i} - \hat{j} - 2\hat{k}$ are given.
- 18. The velocity $V_0 = 2\hat{i} + 3\hat{j} \hat{k}$ and the acceleration $A_0 = -\hat{i} 5\hat{j} + 2\hat{k}$ of a moving object are given. Find the normal and tangential component of acceleration of the object at that instant.

P.T.O.

19. An object moves along the curve $r = e^{-\theta}$, $\theta = 1 - t$ in the polar plane. Find its velocity and acceleration in terms of the unit polar vectors u_r and u_{θ} .