[This question paper contains 4 printed pages.]

Sr. No. of Question Paper	: 5826	D	Your Roll No
Unique Paper Code	: 217153 / 2171	81	
Name of the Course	: B.Sc. (H) Physi	cs / Mather	natics / Mathematical Science
Name of the Paper	: CHEMISTRY	CHCT – 1	101
Semester	: I		

Duration : 3 Hours

Maximum Marks: 75

Instructions for Candidates

- 1. Write your Roll No. on the top immediately on receipt of this question paper.
- 2. Attempt 3 questions from Section A and 3 questions from Section B.
- 3. Please indicate the section you are attempting by putting a heading and do not intermix the sections.
- 4. The questions should be numbered in accordance to the number in the question paper.
- 5. Calculators and log tables may be used.

SECTION A

Attempt three questions in all.

- 1. (a) Explain the following :
 - (i) Boiling point of $H_2O > NH_3$, while $CH_4 < SiH_4$.
 - (ii) PF_5 exists but PH_5 does not.
 - (iii) The bond angles in the fluoride of Nitrogen are less than that of its hydride whereas reverse is true for Phosphorous :

$$NF_3 = 102.1^\circ$$
 $PF_3 = 98^\circ$
 $NH_2 = 107.3^\circ$ $PH_3 = 94^\circ$

(iv) The order of energy of different d-orbitals in square planar complex is :

$$d_{yz} = d_{zx} < d_{z2} < d_{xy} < d_{x2-y2}$$

P.T.O.

2

(v) $[Fe(CN)_6]^{3-}$ is a low spin complex whereas $[FeF_6]^{3-}$ is high spin.

- (b) In Born-Lande equation what does 'A' (Madelung constant) signify ?
- (c) Predict the shapes of ICl_{4}^{-} , PCl_{4}^{+} , OF_{2} . (7¹/₂,2,3)
- (a) Calculate the cation to anion ratio for the coordination number 6 in an arrangement in which the cation is in contact with anions but does not push them apart.
 - (b) Can hypothetical (NaCl₂) exist ? Justify your answer.
 - (c) State Bent's rule. Predict whether H C H bond angle in CH_2F_2 is higher or lower than tetrahedral angle.
 - (d) Draw molecular orbital energy level diagram for O_2 . Write its electronic configuration. Comment on its magnetic properties. (2,2,3^{1/2},5)
- 3. (a) Calculate enthalpy of formation, ΔH_f , of MgF₂ from its elements using the following data :

Sublimation energy of magnesium (S) = 146.4 kJ mol⁻¹ Dissociation energy of fluorine (D) = 158.9 kJ mol⁻¹ Ionization enthalpy of Mg (g) to Mg²⁺ (g) (I) = 2184.0 kJ mol⁻¹ Electron gain enthalpy of F (g) to F⁻ (g) = -334.7 kJ mol⁻¹ Lattice energy of MgF₂ (U₀) = -2922.5 kJ mol⁻¹

- (b) Discuss inter- and intra- molecular hydrogen bonding with suitable examples.
- (c) How does π bonding affect Δ_0 ?
- (d) Differentiate between inert and labile complexes.
- (e) Draw crystal field splitting diagram for octahedral complexes $[CoF_6]^{4-}$ and $[Co(CN)_6]^{3-}$. (2,2,2,4¹/₂)
- 4. (a) What is Jahn-Teller effect? Describe the conditions which lead to -
 - (i) A perfectly octahedral complex.
 - (ii) Strong distortions in octahedral complexes.

(b) On the basis of trans- effect, predict the final product formed in the following reactions :

(i)
$$\begin{bmatrix} Cl \\ l \\ Pt \\ Cl \end{bmatrix}^{-} \xrightarrow{+ NO_2^{-}} \xrightarrow{+ NO_2^{-}}$$

(ii)
$$\begin{bmatrix} Cl \\ l \\ Pt - NO_2 \\ cl \end{bmatrix}^{2^{-}} \xrightarrow{+ NH_3}$$

- (c) What mechanism will you suggest for the reduction of $[Co(NH_3)_5Cl]^{2+}$ by $[Cr(H_2O)_6]^{2+}$? Can you apply the same mechanism for the reduction of $[Co(NH_3)_6]^{3+}$? Justify your answer.
- (d) Differentiate between, thermodynamic stability and kinetic stability giving suitable examples. (4,2,3¹/₂,3)

SECTION B

Attempt three questions in all.

- 5. Explain why?
 - (a) Ethyne is more acidic than ethene.
 - (b) N-methyl aniline is more basic than aniline.
 - (c) Chair conformation of cyclohexane is more stable than boat conformation.
 - (d) Benzyl carbanion is more stable than t- butyl carbanion.
 - (e) Rate of alkylation of phenol is more than nitrobenzene. $(2\frac{1}{2}\times5)$
- 6. (a) Give product/s with mechanism :

OH-2C₆H₅CHO ← (b) Assign E/Z to the following geometrical isomers :

- (c) Arrange in decreasing order of acidic strength and give reason : CH₃CH₂OH, CH₃COOH, HCOOH, C₆H₅OH
- (d) Write all the possible stereoisomers of 2,3-dihydroxybutane and give their relationship with respect to each other. (3,2,3¹/₂,4)
- 7. (a) Write short notes on :
 - (i) Natural and synthetic rubber
 - (ii) Addition and condensation polymerization
 - (b) Draw all the possible conformations of n- butane; give their relative stability order with respect to each other.
 - (c) Arrange the following carbocations in the increasing order of stability, give reason: Methyl carbocation, isopropyl carbocation, t-butyl carbocation.
 - (d) Which of the following possesses aromaticity and why?

8. (a) Assign R and S configuration to the following :

(b) Explain :

- (i) Claisen ester condensation.
- (ii) pK_a of benzoic acid is higher than that of m- nitro benzoic acid.
- (c) What happens when methyl magnesium bromide is treated with CO_2 followed by hydrolysis? (4,6,2¹/₂)

(1800)

