[This question paper contains 4 printed pages.]

Sr. No. of Question Paper: 1789 FC-3 Your Roll No......

Unique Paper Code : 32351102

Name of the Paper : C2 – Algebra

Name of the Course : B.Sc. (H) Mathematics - I (CBCS)

Semester : I

Duration: 3 Hours Maximum Marks: 75

Instructions for Candidates

1. Write your Roll No. on the top immediately on receipt of this question paper.

- 2. All six questions are compulsory.
- 3. Do any two parts from each question.

1. (a) Find the polar representation of the complex number (6)

 $z = 1 + \cos\alpha + \sin\alpha, \alpha \in (0, 2\pi)$

(b) Compute (6)

$$z = \frac{\left((1-i)^{10} \left(\sqrt{3} + i \right)^{5} \right)}{\left(-1 - i\sqrt{3} \right)^{10}}$$

(c) Find the three roots of unity of the complex number z = 1 + i and represent them in the complex plane.

2. (a) For a, $b \in \mathbb{Z}/\{0\}$ define a ~ b if and only if ab > 0. (6)

(i) Prove that \sim defines an equivalence relation on Z.

- (ii) What is the equivalence class of 5? What is the equivalence class of -5?
- (b) Find the gcd (1800, 756). (6)
- (c) Define S: $IR \longrightarrow IR$ by $S(x) = x \lfloor x \rfloor$. Is S is one to one? Is it onto? Explain. (6)
- 3. (a) Given natural numbers a and b, show that there are unique non negative integers q and r with $0 \le r < b$ such that a = bq + r. (6)
 - (b) Show that the open intervals (1,3) and $(0,\infty)$ have the same cardinality.
 - (c) If $ac \equiv bc \pmod{m}$ and (c, m) = 1 then $a \equiv b \pmod{m}$. (6)
- 4. (a) Determine the values of h and k such that the system

$$x_1 + hx_2 = 2$$

$$4x_1 + 8x_2 = k$$

has (i) no solution (ii) a unique solution (iii) many solutions (6½)

(b) Let
$$v_1 = \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix}$$
, $v_2 = \begin{bmatrix} -3 \\ 1 \\ 8 \end{bmatrix}$ and $y = \begin{bmatrix} h \\ -5 \\ -3 \end{bmatrix}$.

For what values(s) of h is y in the plane generated by v_1 and v_2 . (6½)

3

(c) Balance the given chemical equation where Boron Sulphide reacts violently with water to form boric acid and hydrogen sulphide gas. The unbalanced equation

$$B_2S_3 + H_2O \rightarrow H_3BO_3 + H_2S$$

Here, for each compound, construct a vector that lists the number of atoms of boron sulphur, hydrogen and oxygen. (6½)

5. (a) Let $T: \mathbb{R}^2 \to \mathbb{R}^4$ be defined as

$$T(x_1, x_2) = (2x_2 - 3x_1, x_1 - 4x_2, 0, x_2).$$

- (i) Prove that T is a linear transformation.
- (ii) Find the standard matrix of T. (6½)
- (b) Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation and let A be the standard matrix for T. Then prove that
 - (i) T maps \mathbb{R}^n onto \mathbb{R}^m if and only if columns of A spans \mathbb{R}^m .
 - (ii) T is one to one if and only if columns of A are linearly independent.

 (6½)
- (c) Find the basis for the column space and null space of the matrix

$$A = \begin{bmatrix} 4 & 5 & 9 & -2 \\ 6 & 5 & 1 & 12 \\ 3 & 4 & 8 & -3 \end{bmatrix}$$
 (6½)

6. (a) (i) Define a subspace H of \mathbb{R}^n and its dimension too.

Is $H = \{(a, b, c, d) \mid c = a + 2b + 3d\}$ a subspace of \mathbb{R}^4 . Justify your answer. $(6\frac{1}{2})$

1789

(b) Determine the dimension of the subspace H of \mathbb{R}^3 spanned by the vectors

4

$$\mathbf{v}_{1} = \begin{bmatrix} 2 \\ -8 \\ 6 \end{bmatrix}, \quad \mathbf{v}_{2} = \begin{bmatrix} 3 \\ -7 \\ -1 \end{bmatrix} \text{ and } \mathbf{v}_{3} = \begin{bmatrix} -1 \\ 6 \\ -7 \end{bmatrix}$$

$$(6\frac{1}{2})$$

(c) Is $\lambda = 3$ an eigen value of the matrix $\begin{bmatrix} 1 & 2 & 2 \\ 3 & -2 & 1 \\ 0 & 1 & 1 \end{bmatrix}$? If so, find one corresponding eigen vector.