[This question paper contains 4 printed pages.]

Sr. No. of Question Paper: 1112 G Your Roll No.....

Unique Paper Code : 235103

Name of the Paper : Analysis – I (MAHT-102)

Name of the Course : B.Sc. (Hons.) Mathematics

Semester : I

Duration: 3 Hours Maximum Marks: 75

Instructions for Candidates

1. Write your Roll No. on the top immediately on receipt of this question paper.

- 2. All questions are compulsory.
- 3. Attempt any two parts from each questions.
- 1. (a) State and prove the Triangle Inequality and show that

$$||a|-|b|| \le |a-b| \quad \forall a,b \in R.$$
 (5)

(b) Given
$$S = \left\{1 - \frac{1}{n} : n \in \mathbb{N}\right\}$$
, show that $Sup(S) = 1$. (5)

(c) Let
$$a > 0$$
 and $aS = [as: s \in S]$, Show that $Sup(aS) = a Sap(S)$. (5)

- 2. (a) Show that arbitrary, intersection of a family of closed sets is a closed set. Is this result true for an arbitrary family of open sets? Justify your answer. (5)
 - (b) Define Limit Point of a set. Show that the set of limit points of the set of rational numbers is R, the set of real numbers. (5)
 - (c) For non-empty bounded subsets A and B of R, show that

$$\inf(A + B) = \inf(A) + \inf(B). \tag{5}$$

2

- 3. (a) (i) Show that every convergent sequence is bounded but the converse is not true. (5)
 - (ii) Use the definition of the limit of a sequence to find the following limit:

$$\lim_{n\to\infty} \left(\frac{1}{n^2+1}\right). \tag{21/2}$$

- (b) (i) If (x_n) converges to x and (y_n) converges to y then show that $(x_n + y_n)$ converges to (x+y). (5)
 - (ii) Give an example of two divergent sequences (x_n) and (y_n) such that $(x_n + y_n)$ converges. $(2\frac{1}{2})$
- (c) (i) Show that $\lim_{n\to\infty} n^{1/n} = 1$. (5)
 - (ii) Find the following limit:

$$\lim_{x \to \infty} \frac{n}{b^n}, \quad b > 1 \tag{21/2}$$

- 4. (a) State and prove Cauchy Convergence criterion for sequence of real numbers. (5)
 - (b) Prove that $\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = e$. (5)
 - (c) Prove that the following sequence is a Cauchy sequence:

$$\left(1 + \frac{1}{2!} + \cdots + \frac{1}{n!}\right) \tag{5}$$

5. (a) (i) Find the sets of subsequential limits for the following sequences:

$$(a_n) = (0,1,2,1,0,1,2,1,0,1,2,1,0,1,2,1,0 \dots)$$

$$(b_n) = (2,1,1,0,2,1,1,0,2,1,0,1,2,1,1,0,2 \dots).$$

$$(2\frac{1}{2})$$

- (ii) Find the Limit inferior and Limit superior for the above defined sequences (a_n) and (b_n) . $(2\frac{1}{2})$
- (b) Show that the following sequences are divergent:

(i)
$$a_n = (-1)^n$$

(ii)
$$b_n = \sin\left(\frac{n\pi}{2}\right)$$
 (5)

- (c) Let $x_1 = 8$, $x_{n+1} = \frac{x_n}{2} + 2$. Show that (x_n) is bounded and monotone. Also find its limit. (5)
- 6. (a) Give examples of the following series with justification:
 - (i) A divergent series $\sum a_n$ for which $\sum a_n^2$ converges.

(ii) A convergent series
$$\sum a_n$$
 for which $\sum a_n^2$ diverges. (5)

(b) Test the convergence of any two of the following series:

(i)
$$\sum \frac{\cos(n)+1}{3^n}$$

(ii)
$$\sum \frac{1}{\sqrt{n+1}}$$

(iii)
$$\sum \sqrt{n+1} - \sqrt{n}$$
 (5)

- (c) State Ratio test for infinite series and show that $\sum \frac{n!}{3^n}$ diverges. (5)
- 7. (a) State Integral Test for series of real numbers and show that the series $\sum \frac{1}{n^p}$ is convergent if and only if p > 1.

1112

- (b) Show that every absolutely convergent series is convergent but the converse is not true. (5)
- (c) Examine the convergence of any two of the following series:

(i)
$$\sum \frac{(-1)^n}{n!}$$
.

(ii)
$$\sum \frac{(-1)^{n+1} - (-1)^n}{n^2 + 1}$$

(iii)
$$\sum \frac{\left(-1\right)^{n}}{2n+1} \tag{5}$$