[This question paper contains 4 printed pages.]

Sr. No. of Question Paper: 1788 GC-3 Your Roll No......

Unique Paper Code : 32351101

Name of the Paper : C 1 - Calculus

Name of the Course : B.Sc. (Hons.) / Maths - I (CBCS)

Semester : I

Duration: 3 Hours Maximum Marks: 75

Instructions for Candidates

1. Write your Roll No. on the top immediately on receipt of this question paper.

2. All the sections are compulsory.

3. All questions carry equal marks.

4. Use of non-programmable scientific calculator is allowed.

SECTION - I

Attempt any four questions from Section I.

1. If $\cos^{-1} \frac{y}{b} = \log \left(\frac{x}{n}\right)^n$ then show that

$$x^{2}y_{n+2} + (2n+1)xy_{n+1} + 2n^{2}y_{n} = 0$$

2. Sketch the graph of

 $f(x) = \frac{1}{3}x^3 - 9x + 2$ by finding intervals of increase and decrease, critical points, relative extrema and concavity for the given function.

3. Find the horizontal asymptote to the graph of the function

$$f(x) = x^{5} \left[\sin \frac{1}{x} - \frac{1}{x} + \frac{1}{6x^{3}} \right]$$

4. It is projected that t years from now, the population of a certain country will be

$$P(t) = 50 e^{0.02t} \text{ million}$$

- (a) At what rate will the population be changing with respect to time 10 years from now.
- (b) At what percentage rate will the population be changing with respect to time t years from now.
- 5. Sketch the graph of the curve in polar coordinates

$$r^2 = 9\cos 2\theta$$
.

SECTION - II

Attempt any four questions from Section - II.

6. Find the reduction formula for $\int \sin^n x dx$ where n being positive integer and hence evaluate $\int_{0}^{\frac{\pi}{2}} \sin^n x dx$.

Further show that
$$\int_{0}^{\frac{\pi}{2}} \sin^{n} x dx = \int_{0}^{\frac{\pi}{2}} \cos^{n} x dx.$$

7. Find the volume of the solid generated when the region enclosed by the curve $y = \sqrt{x}$, y = 6 - x and y = 0 is revolved about x-axis.

1788

- 8. Find the volume of the solid generated when the region enclosed by the curve $x = 2y 2y^2$ and x = 0 is revolved about x-axis.
- 9. Find the arc length of the parametric curve $x = e^t \sin t$, $y = e^t \cos t$ for $0 \le t \le \frac{\pi}{2}$.
- 10. Find the area of the surface generated by revolving the curve $x = \sqrt{9 y^2}$, $-2 \le y \le 2$, about y-axis.

SECTION - III

Attempt any three questions from Section - III.

- 11. Find the equation for a hyperbola passing through the origin with asymptotes y = 2x + 1 and y = -2x + 3.
- 12. Find the equation of the ellipse whose foci are (1, 2) and (1, 4) and whose minor axis is of length 2.
- 13. Describe the graph of the equation $x^2 4y^2 + 2x + 8y 7 = 0$.
- 14. Trace the conic $x^2 + 2\sqrt{3}xy + 3y^2 + 2\sqrt{3}x 2y = 0$ by rotating the coordinate axes to remove the xy term.

SECTION - IV

Attempt any four questions from Section - IV.

15. Find tangent vector and parametric equation of tangent line to the graph of the vector function

$$\vec{F}(t) = t^2 \hat{i} + (\cos t) \hat{j} + (t^2 \cos t) \hat{k}$$
 at $t = \frac{\pi}{2}$.

1788 4

- 16. A shell is fired with muzzle speed 150 m/s and angle of elevation 45° from a position 10 m above ground level. Where does the projectile hit the ground and with what speed?
- 17. Find the tangential and normal components of acceleration of an object that moves along the parabolic path $y = 4x^2$ at the instant the speed is $\frac{ds}{dt} = 20$.
- 18. An object moves along the curve

$$r = \frac{1}{1 - \cos \theta}$$
 and $\theta = t$

Find its velocity and acceleration in terms of unit polar vectors u_r and u_θ .

19. Find the curvature and radius of curvature for a curve

$$x = 3\cos t, y = 4\sin t, z = t$$
 at $t = \frac{\pi}{2}$.