[This question paper contains 4 printed pages.]

Sr. No. of Question Paper: 1118 G Your Roll No......

Unique Paper Code : 235503

Name of the Paper : Analysis – IV (MAHT-502)

Name of the Course : B.Sc. (Hons.) Mathematics

Semester : V

Duration: 3 Hours Maximum Marks: 75

Instructions for Candidates

1. Write your Roll No. on the top immediately on receipt of this question paper.

2. All questions are compulsory.

3. Attempt any two parts from each question.

1. (a) Let d₁ and d₂ be two metrics on a non-empty set X. Let

$$d(x, y) = \sqrt{d_1^2(x, y) + d_2^2(x, y)}$$

$$d^*(x, y) = \max(d_1(x, y), d_2(x, y))$$
 for all $x, y \in X$.

What is the relation between these two metrics?

(b) Suppose (x, d) is a metric space, Z is a set and $f: Z \to X$ is an injection function.

Show that $(a,b) \rightarrow d(f(a), f(b))$ is a metric on Z.

- (c) Suppose X is a metric space, $z \in X$ and S is a subset of X. Show that $z \in acc(S)$ if, and only if, $z \notin iso(S)$ and dist(z, S) = 0.
- (a) Suppose X is a metric space, x ∈ X and S is a subset of X. Show that x ∈ boundary (S) if and only if, every open ball of X centred at x has non-empty intersection with both S and S^c.
 - (b) What is an isometry? Show that an isometry from a metric space X onto a metric space (Y, d_v) is a homeomorphism.
 - (c) Suppose (X, d) is a metric space, $w \in X$ and A is a subset of X. Then, show that

$$dist(w, cl(A)) = dist(w, A),$$

where cl(A) is the closure of A.

3. (a) Suppose X is a metric space and $S \subseteq X$. Prove that

(i)
$$(S^0)^c = Cl(S^c)$$

(ii)
$$S^0 = \{x \in X: dist(x, S^c) > 0\}$$

(b) Suppose X is a metric space and S is a non-empty subset of X. Then prove that

$$diam(cl(S)) = diam(S)$$
.

Do we also have diam(int(S)) = diam(S)? Justify your answer.

(c) Suppose (X, d) is a metric space and Z is a metric subspace of X. Show that the collection of open subsets of Z is $\{U \cap Z \mid U \text{ is open in } X\}$.

1118

3

- 4. (a) Suppose X is a metric space and $S \subseteq X$. Prove that
 - (i) $\partial (\partial S) \subseteq \partial S$.
 - . (ii) \overline{S} is the smallest superset of S that is closed in X.
 - (b) Let A be a nonempty subset of a metric space X. Show that $z \in cl(A)$ if and only if, there is a sequence in A that converges to z in X.
 - (c) If $x = \langle x_n \rangle$ has a subsequence which converges to z. Show that

$$dist(z, \{x_n : n \in N\}) = 0.$$

Give an example to show that converse to above statement is not necessarily true.

- 5. (a) Suppose X is a metric space and S is a bounded subset of X,
 - (i) Show that closure of S is bounded in X.
 - (ii) Is S also a totally bounded? Justify your answer.
 - (b) Let $f: X \to Y$ be a function from the metric space X into other metric space. Show that f is a continuous at every isolated point of X.
 - (c) Let $f: (X, d) \to (Y, e)$ be uniformly continuous. Prove that the sequence (x_n) is Cauchy in X if and only if the sequence $(f(x_n))$ is Cauchy in Y.
- 6. (a) State Banach contraction Property. Give an example of a complete metric space X and a function f: X → X such that d(f(x), f(y)) <=d(x,y) for all x, y ∈ X, but f has no fixed point in X.

- (b) Define a connected space. Prove that a metric space X is connected if and only if, every continuous function $f: X \to \{0, 1\}$ (a discrete space) is a constant function.
- (c) Define a compact metric space. Prove that the continuous image of a compact metric space is compact.