[This question paper contains 4 printed pages.]

Sr. No. of Question Paper: 1837 GC-3 Your Roll No......

Unique Paper Code : 42351101

Name of the Paper : Mathematics – I : Calculus and Matrices (Course Code-235)

Name of the Course : B.Sc. (Mathematical Sciences) / B.Sc. (Physical

Sciences)

Semester : I

Duration: 3 Hours Maximum Marks: 75

## **Instructions for Candidates**

1. Write your Roll No. on the top immediately on receipt of this question paper.

2. Attempt any two questions from each Section.

## **SECTION I**

1. (a) Define basis of a vector space.

Is the set S,

$$S = \left\{ \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \right\}$$

of vectors constitute a basis for R<sup>3</sup>?

(b) Define a linear Transformation. Let T:  $R^2 \to R^2$  be the transformation denoting reflection about the line y = -x. Show that T is a linear transformation. Also find the standard matrix representing T. (6)

(6)

2. (a) Define rank of a matrix. Find the rank of the following matrix by using elementary row operations.

$$\begin{bmatrix} 1 & 1 & 2 & 3 \\ 1 & 3 & 0 & 3 \\ 1 & -2 & -3 & 0 \\ 1 & 1 & 2 & 3 \end{bmatrix}$$
 (6)

(b) Let

$$A = \begin{pmatrix} 1 & 2 & -1 \\ 1 & 0 & 1 \\ 4 & -4 & 5 \end{pmatrix}$$

Find eigen values of the matrix A and eigen vector corresponding to one of them.

- (a) Define a subspace of a vector space. Let W be the set of all points inside and on the unit circle in the xy-plane. Is W a subspace of xy-plane?
   Justify.
   (6)
  - (b) Solve the system of equations:

$$x + y + 3z = 1$$
  
 $2x + 3y - z = 3$   
 $5x + 7y + z = 7$  (6)

## **SECTION II**

- 4. (a) Sketch the graph of  $y = \frac{1}{2}x^2 3x + \frac{11}{2}$ . Mention the transformation used at each step.
  - (b) A certain culture of bacteria grows at a rate that is proportional to the number present. It is found that the number doubles in 4 hours. How may be expected at the end of 24 hours?

    (6)

1837

(c) Find  $\frac{d^n y}{dx^n}$ , where

$$y = \sin(ax + b). \tag{6}$$

5. (a) Discuss the convergence of the sequences: (6)

(i) 
$$\left\langle \frac{\sin n}{n} \cdot \frac{n}{3n+1} \right\rangle$$
 (ii)  $\left\langle 1 + \left(-\frac{1}{2}\right)^n \right\rangle$  (6)

(b) Show that

$$u(x,t) = 4 \cos (2x + 2ct) + e^{x+ct}$$

is a solution of the wave equation 
$$\frac{\partial^2 \mathbf{u}}{\partial \mathbf{t}^2} = \mathbf{c}^2 \frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2}$$
. (6)

(c) If 
$$u = \frac{1}{\sqrt{x^2 + y^2 + z^2}}$$
,  $x^2 + y^2 + z^2 \neq 0$ 

Show that 
$$\frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2} + \frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2} + \frac{\partial^2 \mathbf{u}}{\partial \mathbf{z}^2} = 0$$
. (6)

6. (a) If  $y = \frac{\sin^{-1} x}{\sqrt{1 - x^2}}$  show that

$$(1-x^2)y_{n+2} - (2n+3)xy_{n+1} - (n+1)^2y_n = 0.$$
(6)

(b) Find the n<sup>th</sup> Maclaurins polynomial for  $\frac{1}{1-x}$ . (6)

(c) Draw the level curve of  $f(x, y) = y^2 - x^2$  of height k = 1. (6)

## **SECTION III**

- 7. (a) Give the geometrical representation of difference of two complex numbers. (3½)
  - (b) State Fundamental Theorem of Algebra. Also form an equation in lowest degree with real coefficients having  $2 + \sqrt{(-3)}$  and  $3 + \sqrt{(-5)}$  as two of its roots. (4)
- 8. (a) Solve the equation

$$z^4 + z^3 + z^2 + z + 1 = 0. (4)$$

(b) Show that

$$(1+\cos\theta+i\sin\theta)^n + (1+\cos\theta-i\sin\theta)^n = 2^{n+1}\cos^n\frac{\theta}{2}\cos\frac{n\theta}{2}. \qquad (3\frac{1}{2})$$

- 9. (a) Find the equation of the circle described on the line joining the points (-1 3i) and (5+7i) as extremities of one of its diameters. (4)
  - (b) Find the equation of the right bisector of the line joining the points  $z_1$  and  $z_2$ . (3½)