[This question paper contains 4 printed pages.]

1464-A

Your Roll No.

B.A./B.Sc. (Hons.)/II

A

MATHEMATICS - Unit V

(Algebra - II)

(Admissions of 2008 and before)

Time: 2 Hours

Maximum Marks: 38

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt any one question from each Section.

SECTION I

(a) Prove that a semigroup G is a group if for all a, b ∈ G, the equations ax = b and xa = b are solvable in G.

Give an example to show that the conclusion does not hold if only one of the equations is solvable. (5)

(b) Prove that any subgroup H of (Z, +) is of the form $\langle a \rangle = aZ$ where a is a positive integer.

(2)

(c) If $H = \langle a \rangle$ and $K = \langle b \rangle$ are two subgroups of (Z, +), prove that H + K is a subgroup of (Z, +) and $H + K = \langle d \rangle$ where d = g.c.d.(a, b). (3)

- (a) Prove that order of a cyclic group is equal to order of its generator.
 - (b) Prove that A₄ has no subgroup of order 6. (3)
 - (c) If N is a normal subgroup of G and $N \cap G' = \{e\}$, prove that $N \subseteq Z(G)$ where G' is commutator subgroup of G and Z(G) is the centre of G.

(3)

SECTION II

- (a) If G is the additive group of reals and N is the subgroup of G consisting of integers, prove that
 G
 N is isomorphic to the group H of all complex numbers of absolute value 1 under multiplication.
 (4)
 - (b) State Cayley's Theorem. Find the permutation group isomorphic to the Klein-4-group $G = \{e, a, b, ab\}$ where $a^2 = b^2 = e & ab = ba$.

 (4)
 - (c) Let R' be the group of non-zero real numbers under multiplication, then prove that (R', ·) is not isomorphic to (R, +).
- 4. (a) Let f be a homomorphism of G onto G' with kernel K and let N' be a normal subgroup of G'. Prove

that \exists a normal subgroup N of G containing K such that

$$\frac{G}{N} \cong \frac{G'}{N'}$$
 (4)

(b) Let G be the group of all 2×2 matrices over reals of the type $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$, ad $-bc \neq 0$ under matrix $\begin{pmatrix} a & b \end{pmatrix}$

multiplication. Prove that the map $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \rightarrow ad - bc$ is an onto homomorphism but not l-1 from G to $(R-\{0\}, \cdot)$.

(c) Using the result if G is a finite group and H is a subgroup of G, H ≠ G such that O(G) does not divide (i(H))!, then H contains a nontrivial normal subgroup N of G", prove that if a group G of order 91 has a subgroup H of order 13, then H is normal in G.

SECTION III

- (a) Define an inner automorphism of a group G. Prove that the set O(G) of all inner automorphisms of G is a normal subgroup of G.
 - (b) Let σ & η be two conjugate permutations in S_n . Prove that they are similar.

Hence or otherwise prove that centre of S_n , $x \ge 3$ is trivial. (5)

P.T.O.

- (a) Let G be an infinite cyclic group. Determine Aut (G).

 (4)
 - (b) State and prove Cauchy's theorem for a finite abelian group. (5)

SECTION IV

- (a) Define a p-group. Prove that a finite group G is a p-group iff O(G) = pⁿ for some positive integer n.
 - (b) Let G be a finite group in which $x^2 = e \ \forall \ x \in G$. Prove that $O(G) = 2^n$ for some integer n. Also prove that G is abelian. (4)
- 8. (a) Prove that a group of order 30 has normal subgroups of order 3, 5 and 15. (5)
 - (b) Determine all non-isomorphic abelian groups of order 8. (4)