This quest	tion paper contains 4 printed pages]
•	Your Roll No.
1466	
	B.Sc. (Hons.)/II
	MATHEMATICS—Paper VII
	(Algebra-II)
	(Admissions of 2009 and onwards)
Time : 3 F.	lours . Maximum Marks: 75
(Write your	Roll No. on the top immediately on receipt of this question paper.)
	Attempt All questions.
1. (a)	Let H and K be subgroups of a finite group G. Prove that :
•	$ HK = \frac{ H K }{ H \cap K }$
(b)	Show that the commutator subgroup G of a group G
	is a normal subgroup of G.
	Or
(a)	Prove that every subgroup of D_n of odd order is cyclic.
(b)	Show that for :
•	$n \ge 3$, $Z(S_n) = \{1\}$
· (c)	Let H be a subgroup of G. If index of H in G is 2,
	show that H is normal in G.

- 2. (a) Let G be a finite abelian group and let p be a prime that divides the order of G. Show that G has an element of order p.
 6.
 (b) Prove that there is no be a prime of finite abelian group and let p be a prime abelian group and let p be a prime abelian group and let p be a prime abelian group abelian group and let p be a prime abelian group abelian group and let p be a prime abelian group abelian g
 - (b) Prove that there is no homomorphism from:

$$Z_{16} \oplus Z_2$$
 onto $Z_4 \oplus Z_4$. 6½

O

- (a) Show that a group of order 35 is cyclic by using N/C theorem.
- (b) Show that :

$$\frac{G}{Z(G)} \equiv 2nn(G)$$

where Z(G) denotes the centre of G. Deduce that Aut G is cyclic implies G is abelian.

- 3. (a) Let R be a commutative ring with unity and let A be an ideal of R. Show that $\frac{R}{A}$ is a field if and only if A is maximal.
 - (b) Show that $I = \langle 2 + 2i \rangle$ is not a prime ideal of Z[i]. How many elements are in $\frac{Z[i]}{I}$?

Or

- (a) Show that if m and n are distinct positive integers, then the ring mz is not isomorphic to the ring nz.
 - (b) Determine all ring homomorphisms from Z_{12} to Z_{30} . 6½

4.	(a)	Show that in a principal ideal domain an element is irreducible
ı	٠	if and only if it is prime. 61/2
,	(b)	(i) Let D be a Euclidean domain and d the associated
		function. Show that u is a unit in D , if and only
		if d(u) = d(1). 4
•		(ii) Determine the units in Z[i].
	•	Or ·
.•	(a)	·Assuming ascending chain condition, show that every
		principal ideal domain is a unique factorization domain. 61/2
	(b)	Show that $x^4 + 1$ is irreducible over Q but reducible
		over Z_p for every prime p .
5.	(a)	State and prove Replacement theorem.
	(b)	Let V, W and Z be vector spaces and let $T: V \to W$
		and $U: W \rightarrow Z$ be linear. Prove that UT is one-to-
	•	one, then T is one-to-one. Must U also be one-to-one?
•	1	Justify your answer. 61/2
		Or
	(a)	Let u , v and w be distinct vectors of a vector space
		v. Show that $\{u, v, w\}$ is a basis for v if and only

u} is a basis for v.

- (b) Let ν and w be finite dimensional vector spaces with ordered bases β and γ . Let $T:V\to W$ be linear. Show that T is invertible if and only if $[T]_{\beta}^{\gamma}$ is invertible.
- 6. (a) Prove that if W is a subspace of a finite dimensional vector space v, then dim $w + \dim w^o = \dim v$. 6
 - (b) Let T be the linear operator on $M_{2\times 2}$ (R) defined by T(A) = A'. Show that ± 1 are only eigen values of T and T is diagonalizable.

Ór

(a) Suppose that W is a finite dimensional vector space \cdot and T : V \rightarrow W is linear. Prove that :

$$N(T') = (R(T))^{\circ}.$$

(b) Show that the characteristic polynomial of any diagonalizable operator splits but the converse need not be true.