Roll No.						

 \mathbf{C}

S. No. of Question Paper: 8811

Unique Paper Code : 235301

Name of the Paper

: III. 1 : Calculus II

Name of the Course

: B.Sc. (Hons.)/Mathematics/Part II

Semester

: III

Duration: 3 Hours

Maximum Marks: 75

(Write your Roll No. on the top immediately on receipt of this question paper.)

All sections are compulsory.

Attempt any Five questions from each Section.

Section I

1. (a) Let f be the function defined by:

$$f(x, y) = \begin{cases} \frac{xy^2}{x^2 + y^4}, & \text{for } (x, y) \neq (0, 0) \\ 0, & \text{for } (x, y) = (0, 0) \end{cases}$$

Is f continuous at (0,0)? Explain.

(b) Let $z = x^2 \sin(3x + y^3)$. Evaluate:

$$\frac{\partial z}{\partial x}$$
 and $\frac{\partial z}{\partial y}$ at $\left(\frac{\pi}{3}, 0\right)$.

2. If F(x, y) = 0 defines y implicitly as a differentiable function x, then show that :

$$\frac{dy}{dx} = -\frac{\mathbf{F}_x}{\mathbf{F}_y},$$

provided $F_y \neq 0$. Hence or otherwise obtain $\frac{dy}{dx}$ for :

$$\sin(x+y) + \cos(x-y) = y.$$
 2+3

3. Let f(x, y) be a function that is differentiable at (x_0, y_0) . Then show that f has a directional derivative in the direction of the unit vector $u = u_1 i + u_2 j$ given by:

$$D_u f(x_0, y_0) = f_x(x_0, y_0) u_1 + f_y(x_0, y_0) u_2.$$

Hence or otherwise find the directional derivative of

$$f(x, y) = \ln(x^2 + y^3)$$
 at $P_0(1, -3)$,

in the direction of u = 2i - 3j.

3+2

- 4. At a certain factory, the daily output is Q = 60 K^{1/2} L^{1/3} units, where K denotes the capital investment (in units of \$ 1,000) and L the size of the labour force (in worker hours). The current capital investment is \$900,000 and 1,000 worker hours of labour are used each day. Estimate the change in output that will result if the capital investment is increased by \$1,000 and labour is decreased by 2 worker hours.
- 5. Find all relative extrema and saddle points of the function:

$$f(x, y) = 2x^2 + 2xy + y^2 - 2x - 2y + 5.$$

6. Given that the largest and the smallest values of $f(x, y) = 1 - x^2 - y^2$ subject to the constraint x + y = 1 with $x \ge 0$ and $y \ge 0$ exist, use the method of Lagrange Multiplier to find these extrema.

Section II

7. (a) Write an equivalent integral with the order of integration of reversed:

$$\int_0^4 \int_{y/2}^{\sqrt{y}} f(x, y) \, dx dy.$$

(b) Evaluate $\iint_D \frac{dA}{y^2 + 1}$; D is the triangle bounded by x = 2y, y = -x and y = 2. 2+3

(3)

- 8. Express the volume of the solid bounded above by the paraboloid $z = 6 2x^2 3y^2$ and below by the plane z = 0 as a double integral and evaluate.
- 9. Use polar co-ordinates to evaluate $\iint_D xy \ dA$ where D is the intersection of the circular disks $r \le 4\cos\theta$ and $r \le 4\sin\theta$. Sketch the region of integration.
- 10. Find the volume of the solid D bounded above by the sphere $x^2 + y^2 + z^2 = 4$ and below by the plane y + z = 2 where $z \ge 0$.
- 11. (a) Let u = x + y, v = x y. Find the image of the rectangle $0 \le x \le 6$, $0 \le y \le 5$ in the u v-plane. Sketch the image.
 - (b) Express the equation $z = x^2 + y^2$ in terms of spherical co-ordinates (ρ, θ, ϕ) . 3+2
- 12. Find the centroid of the solid bounded by the surface

$$z = \sqrt{x^2 + y^2}$$

and the plane z = 9.

Section III

13. Find the work done by the force field

$$\overrightarrow{\mathbf{F}} = (x^2 + y^2) \overrightarrow{i} + (x + y) \overrightarrow{j}$$

as an object moves counterclockwise along the circle $x^2 + y^2 = 1$ from (1, 0) to (-1, 0) and then back to (1, 0) along the x-axis.

14. Show that the vector field

$$\overrightarrow{F} = (20x^3z + 2y^2)\overrightarrow{i} + 4xy\overrightarrow{j} + (5x^4 + 3z^2)\overrightarrow{k}$$

is conservative in \mathbb{R}^3 and find a scalar potential function for $\overset{\rightarrow}{\mathbf{F}}$.

P.T.O.

5

(4) 8811

15. State Green's Theorem for a simply connected region in R². Use Green's Theorem to find the work done by the force field

$$\overrightarrow{\mathbf{F}}(x, y) = (3y - 4x) \overrightarrow{i} + (4x - y) \overrightarrow{j}$$

when an object moves once counterclockwise around the ellipse:

$$4x^2 + y^2 = 4. 2+3$$

16. Let S be a surface defined by z = f(x, y) and R be its projection on the xy-plane. Give the formula for the surface integral of a continuous function g defined over S assuming that f, f_x and f_y are continuous functions in R.

Using the formula, evaluate the surface integral $\iint_{S} g ds$ where

$$g(x, y, z) = xz + 2x^2 - 3xy$$

and S is that portion of the plane 2x - 3y + z = 6 that lies over the unit square

$$R: 2 \le x \le 3, 2 \le y \le 3$$

Compute the flux integral

$$\iint_{\mathbf{S}} \overrightarrow{\mathbf{F}} \cdot \overrightarrow{\mathbf{N}} ds, \text{ where } \overrightarrow{\mathbf{F}} = xy \overrightarrow{i} + z \overrightarrow{j} + (x + y) \overrightarrow{k}$$

and S is the triangular surface cut off from the plane x + y + z = 1 by the co-ordinate planes. Assume $\stackrel{\rightarrow}{N}$ is the upward unit normal.

18. State Stokes' theorem. Let S be the portion of the plane x + y + z = 1 that lies in the first octant, and let C be the boundary of S, traversed counterclockwise as viewed from above. Verify Stokes' theorem for the surface S and the vector field:

$$\overrightarrow{F} = -\frac{3}{2}y^{2}\overrightarrow{i} - 2xy\overrightarrow{j} + yz\overrightarrow{k}.$$

8811