[This question paper contains 4 printed pages.]

Sr. No. of Question Paper	$: 6610 \quad$ Dour Roll No.................	
Unique Paper Code	$: 235301$	
Name of the Course	$:$ B.Sc. (Hons.) / Mathematics / Part - II	
Name of the Paper	$:$ III.1 Calculus II	
Semester	: III	
Duration $: 3$ Hours		

Instructions for Candidates

1. Write your Roll No. on the top immediately on receipt of this question paper.
2. All sections are compulsory.
3. Attempt any Five questions from each section.

SECTION I

1. (a) Let f be the function defined by:

$$
f(x, y)= \begin{cases}\frac{x-y^{2}}{x^{2}+y^{2}}, & \text { for }(x, y) \neq(0,0) \\ 0, & \text { for }(x, y)=(0,0)\end{cases}
$$

Is f continuous at $(0,0)$? Justify your answer.
(b) Let $f(x, y)=x \ln \left(x+y^{2}\right)$ be any surface. Compute the slope of the tangent line to the graph of f at $(e, 0, e)$ in the direction parallel to
(i) the $x z$-plane, and (ii) the $y z$-plane.
2. When two resistors with resistances P and Q ohms are connected in parallel, the combined resistance R satisfies

$$
\frac{1}{R}=\frac{1}{P}+\frac{1}{Q} .
$$

If P and Q are measured at 6 and 10 ohms, respectively, with errors no greater than 1%, what is the maximum percentage error in the computation of R ?
3. (a) If $z=x y+f\left(x^{2}+y^{2}\right)$, then compute : $y \frac{\partial z}{\partial x}-x \frac{\partial z}{\partial y}$.
(b) Find $\frac{\partial \mathrm{w}}{\partial \mathrm{r}}$, where $\mathrm{w}=\mathrm{e}^{2 \mathrm{x}-\mathrm{y}+3 \mathrm{z}^{2}}$ and $\mathrm{x}=\mathrm{r}+\mathrm{s}-\mathrm{t}, \mathrm{y}=2 \mathrm{r}-3 \mathrm{~s}, \mathrm{z}=$ cosrst.
4. (a) Find equations for the tangent plane and the normal line at the point $(1,-1,2)$ on the surface $x^{2} y+y^{2} z+z^{2} x=5$.
(b) Find the directional derivative of $f(x, y)=e^{x^{2} y^{2}}$ at $P(1,-1)$ in the direction towards $Q(2,3)$.
5. Find the point on the plane $x+2 y+z=5$ that is closest to the point $(0,3,4)$.
6. Use the method of Lagrange multipliers to find the largest and smallest values of $f(x, y)=16-x^{2}-y^{2}$ subject to constraint $x+2 y=6, x \geq 0$, and $y \geq 0$.

SECTION II

7. Find the volume of the solid bounded above by the plane $z=y$ and below in the $x y$-plane by the part of the disk $x^{2}+y^{2} \leq 1$ in the first quadrant, using a double integral.
8. Sketch the region of integration and compute the integral

$$
\begin{equation*}
\int_{0}^{1} \int_{x}^{2 x} e^{y-x} d y d x \tag{5}
\end{equation*}
$$

with the order of integration reversed.
9. Use polar co-ordinates to evaluate.

$$
\begin{equation*}
\int_{0}^{2} \int_{y}^{\sqrt{8-y^{2}}} \frac{1}{\sqrt{1+\mathrm{x}^{2}+\mathrm{y}^{2}}} \mathrm{dA} \tag{5}
\end{equation*}
$$

10. Find the volume of the solid in the first octant that is bounded by the cylinder $x^{2}+y^{2}=2 y$, the half cone $z=\sqrt{x^{2}+y^{2}}$, and the $x y-p l a n e$.
11. Evaluate

$$
\begin{equation*}
\iiint_{D} \frac{d x d y d z}{\sqrt{x^{2}+y^{2}+z^{2}}} \tag{5}
\end{equation*}
$$

where D is the solid sphere $x^{2}+y^{2}+z^{2} \leq 3$.
12. Use a suitable change of variables to find the area of the region R bounded by the hyperbolas $x y=1$ and $x y=4$, and the lines $y=x$ and $y=4 x$.

SECTION III

13. Evaluate

$$
\int_{\mathrm{C}} 5 x y d x+10 y z d y+z d z
$$

where the path C consists of the parabolic arc $x=y^{2}$ from ($0,0,0$,) to $(1,1,0)$ followed by the line segment given by $x=1, y=1,0 \leq z \leq 1$.
14. Verify that the line integral

$$
\int_{C}\left(3 x^{2}+2 x+y^{2}\right) d x+\left(2 x y+y^{3}\right) d y
$$

where C is any path from $(0,0)$ to $(1,1)$ is independent of path and then find its value.
15. State Green's theorem for a simply connected region in R^{2}. Use Green's theorem to find the work done when an object moves in the force field $\vec{F}(x, y)=y^{2} \vec{i}+x^{2} \vec{j}$ counter clockwise around the circular path $x^{2}+y^{2}=2$.
16. Find the flux of the vector field $\vec{F}(x, y)=z \vec{i}+x \vec{j}+(y+z) \vec{k}$ through the parametrized surface

$$
\vec{R}(u, v)=(u v) \vec{i}+(u-v) \vec{j}+(2 u+v) \vec{k}
$$

over the triangular region D in the $u v-p l a n e$ that is bounded by $u=0, v=0$ and $u+v=1$.
17. State Stoke's theorem. Use Stoke's theorem to evaluate the line integral

$$
\oint_{C}(3 y d x+2 z d y-5 x d z)
$$

where C is the intersection of the xy-plane and the hemisphere
$z=\sqrt{1-x^{2}-y^{2}}$, traversed counter clockwise as viewed from above.
18. Use Divergence theorem to evaluate

$$
\iint_{\mathrm{S}}(\overrightarrow{\mathrm{~F}} \cdot \overrightarrow{\mathrm{~N}}) \mathrm{dS}
$$

where $\vec{F}(x, y, z)=\left(x^{5}+10 x y^{2} z^{2}\right) \vec{i}+\left(y^{5}+10 y x^{2} z^{2}\right) \vec{j}+\left(z^{5}+10 z x^{2} y^{2}\right) \vec{k}$ and S is the closed hemispherical surface $\mathrm{z}=\sqrt{1-\mathrm{x}^{2}-\mathrm{y}^{2}}$ together with the disk $\mathrm{x}^{2}+\mathrm{y}^{2} \leq 1$ in the xy-plane.
19. State and prove the Divergence theorem.

