[This question paper contains 2 printed pages.]

Sr. No. of Question Paper	:	6613	D	Your Roll No
Unique Paper Code	:	235304		
Name of the Course	:	B.Sc. (Hons.) Ma	thematics	
Name of the Paper	:	III.3 – Algebra II		
Semester	:	III		

Duration : 3 Hours

Maximum Marks: 75

Instructions for Candidates

- 1. Write your Roll No. on the top immediately on receipt of this question paper.
- 2. Attempt any two parts from each question.
- 3. All questions are compulsory.
- (a) For a fixed point (a,b) in R², define T_{a,b}: R² → R² by T_{a,b}(x,y) = (x+a, y+b). Let G = { T_{a,b}: a, b ∈ R}. Prove that G is a group under function composition. Is G abelian ?
 - (b) (i) Let G be a group and H be a non-empty subset of G. Prove that H is a subgroup of G iff a. b ∈ H for all a, b ∈ H and a⁻¹ ∈ H for all a ∈ H.
 - (ii) Let G be a group that has exactly elements of order 3. How many subgroup of order 3 does G have?(3)
 - (c) Define centre Z(G) of a group.
 - (i) Prove that Z(G) is an subgroup of G.
 - (ii) Determine the centre of the group $GL(2, \mathbb{R})$ (6)
- 2. (a) Prove that every subgroup of a cyclic group is cyclic. If G is cyclic group of order n and H is a subgroup of G, then prove that |H| divides |G|. (6)

(b) Prove that
$$H = \left\{ \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix} : n \in Z \right\}$$
 is a cyclic subgroup of GL(2, R). (6)

- (c) (i) Find the smallest subgroup of Z containing 6 and 15. (3)
 - (ii) Let G be a group such that $x^2 = e$ for all $x \in G$, where e is the identity of G. Prove that G is abelian. (3)

661	3	2
3.	(a)	Prove that the set A_n of all even permutations of $S_n (n \ge 2)$ is a normal subgroup of S_n and $ A_n = S_n /2$. (6.5)
	(b)	(i) Given that the orders of the elements of A_4 are 1, 2, 3. Prove that $ Z(A_4) = 1.$ (3)
		(ii) State Lagrange's Theorem. Suppose $ G = p.q$ where p and q are prime numbers. Prove every proper subgroup of G is cyclic. (3.5)
	(c)	 (i) Let H be a subgroup of G and let a,b ∈ G. Does aH = bH ⇒ a = b ? Justify your answer. (3)
		(ii) If N is a normal subgroup of G and H is any subgroup of G. Prove that NH is a subgroup of G and N is normal in NH. (3.5)
4.	(a)	Let H be a subgroup of G. Prove that H is normal in G iff $aHbH = abH$ for all $a,b \in G$. (6.5)
	(b)	Let N be a normal subgroup of G and let H be a subgroup of G containing N. Prove that H/N is a normal subgroup of G/N iff H is a normal subgroup of G. (6.5)
	(c)	Define a commutator subgroup G' of G. Prove that G' is the smallest subgroup of G such that G/G' is abelian. (6.5)
5.	(a)	State and prove Cayley's Theorem. (6)
	(b)	Let G be acyclic group of order n. Prove that $Aut \ G \approx U_n$. (6)
	(c)	(i) Prove that U(10) is not isomorphic to U(12). (3)
		(ii) Let G be a group. Prove that the mapping $\alpha : G \to G$ defined as $\alpha(g) = g^{-1}$ for all $g \in G$ is an automorphism iff G is abelian. (3)
6.	(a)	Let H and K be two subgroup of G such that K is normal in G. Prove that $HK/K \approx H/H \cap K$. (6.5)
	(b)	Let ϕ be a homomorphism from a group G to a group \overline{G} and let $g \in G$. If $\phi(g) = \overline{g}$ then prove that $\phi^{-1}(\overline{g}) = g$ Ker ϕ . (6.5)
	(c)	Determine all homomorphisms from Z_{20} to Z_8 . (6.5)

E...

(2800)