This question paper contains 4 printed pages]

Roll No.					
----------	--	--	--	--	--

D

S. No. of Question Paper : 5821

Unique Paper Code : 222181

Name of the Paper : Physics-I

Name of the Course

: B.Sc. Mathematical Science/B.Sc. (Hons.) Maths.

Semester

: III/I

Duration : 3 Hours

Maximum Marks: 75

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt *five* questions in total.

Use of non-programmable calculator is allowed.

1. (a) What are axial and polar vectors ? Give one example of each.

(b) Find the work done W in moving a particle in a force :

 $\mathbf{F} = (2xy + z^3) i + x^2 j + 3xz^2 k$

from the point (1, -2, 1) to (3, 1, 4).

(c) State and prove Stokes theorem of vector calculus. Give its physical significance.
8

P.T.O.

3

4

		(2) 58	21
2.	(<i>u</i>)	State and prove work energy theorem.	.6
	(b)	What are elastic and inelastic collision ? Give examples.	3
	(c)	Discuss one-dimensional elastic collision between two bodies.	6
3.	(<i>a</i>)	Define centre of mass and give its mathematical definition. Does the center of m	ass
		of a solid body necessarily lie within the body ? Support your answer with	an
• • •		example.	5 .
	(<i>b</i>)	Derive an expression for the kinetic energy of a rotating body in terms of its mom	ent
		of inertia and angular velocity.	5
	·(C)	State and prove theorem of parallel axes.	5
4.	Wha	at are 'Lissajous' figures ?	
	Disc	cuss, with necessary theory, the superposition of two sinusoidal signals of equal frequenc	ies
	but	different amplitude. Describe what happens if one of the vibration changes its phase from	om.
	0° to	o 180° relative to the other.	0,4
5.	(<i>a</i>)	Explain the effect of damping an oscillatory motion.	2

,

1

(b) Set up and solve the differential equation of a damped harmonic oscillator and discuss its special cases :

(*i*) Heavy damping

(*ii*) Critical damping

(*iii*) Under damping.

7.

(c) Define logarithmic decrement for a damped harmonic oscillator.

- 6. (a) Discuss the necessary condition for sustained interference. Describe with necessary theory, the Young's double slit method of determining wavelength of monochromatic light.
 - (b) Green light wavelength 5100 Å from a narrow slit is incident on a double slit if over all separation of 10 fringes on a screen 2 m away is 2.0 cm, find the double slit separation.
 - (a) Distinguish between Fresnel's and Fraunhofer's class of diffraction.
 - (b) What is zone plate and how is it made ? Explain how a zone plate acts like a convergentlens having multiple foci. Derive an expression for its focal length.

P.T.O.

5

Q

4

8. Write short notes on any *two* of the following :

(1) Nicol prism

(2) Dispersive power and resolving power of a grating.

(3) Moment of Inertia.

1,700

71/2,71/2