[This question paper contains 4 printed pages.]

Sr. No. of Question Paper : 2065 GC-3 Your Roll No.....

Unique Paper Code : 32351302

Name of the Paper : C6 Group Theory 1

Name of the Course : B.Sc. (Hons) Mathematics - CBCS

Semester : III

Duration: 3 Hours Maximum Marks: 75

Instructions for Candidates

1. Write your Roll No. on the top immediately on the receipt of this question paper.

- 2. Attempt any two parts from each question.
- 3. All questions are compulsory.

- 1. (a) Describe the elements of the dihedral group D₃ and show that they form a group under composition of mappings. (6)
 - (b) Prove that if H and K are subgroups of G, then so is $H \cap K$. Is $H \cup K$ a subgroup of G? Justify your answer. (6)
 - (c) Define Centralizer C(G) of a group G. Is C(G) Abelian? Justify your answer.
- 2. (a) Let $G = \langle a \rangle$ be a cyclic group of order n. Show that $G = \langle a^k \rangle$ if and only if gcd(k,n) = 1.

2065

2

- (b) List the subgroups of Z_{30} and their generators. (6)
- (c) (i) Let G be an Abelian group with identity e. Prove that

$$H = \{x \in G | x^2 = e\}$$
 is a subgroup of G. (3)

(ii) Let a and b be elements of a group. If |a| = 10 and |b| = 21, show

that
$$\langle a \rangle \cap \langle b \rangle = \{e\}$$
. (3)

- (a) Prove that every permutation on a finite set can be written as a cycle or product of disjoint cycles.
 - (b) Prove that the set of even permutations in S_n forms a subgroup of S_n .

(c) Let
$$\alpha = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 1 & 3 & 5 & 4 & 7 & 6 & 8 \end{bmatrix}$$
 and $\beta = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 3 & 8 & 7 & 6 & 5 & 2 & 4 \end{bmatrix}$

Write α and β as

(i) products of disjoint cycles.

- 4. (a) Prove that any finite cyclic group of order n is isomorphic to \mathbb{Z}_n and any infinite cyclic group is isomorphic to \mathbb{Z} . (6½)
 - (b) Let \overline{G} denote the left regular representation of the group G (as defined in Cayley's Theorem). Calculate $\overline{U(12)}$. (6½)

2065

(c) Give statements only, of Lagrange's Theorem and its converse. Is the converse true? Justify your answer. (6½)

3

5. (a) Let H and K be subgroups of a finite group G. Prove that

$$|HK| = \frac{|H||K|}{|H \cap K|} \tag{61/2}$$

- (b) Let G be a finite Abelian group and let p be a prime number that divides the order of G. Prove that G has an element of order p.

 (6½)
- (c) Let φ be a homomorphism from a group G to a group \bar{G} and let H be a subgroup of G. Prove that

(i) if H is cyclic, then
$$\varphi(H)$$
 is cyclic. (2)

- (ii) if H is Abelian, then $\varphi(H)$ is Abelian. (2)
- (iii) if H is normal in G, then $\varphi(H)$ is normal in $\varphi(G)$. (2½)
- 6. (a) State and prove The Second Isomorphism Theorem. (6½)
 - (b) Let G be a subgroup of some dihedral group. For each x in G, define

$$\varphi(x) = \begin{cases} +1 & \text{if } x \text{ is a rotation} \\ -1 & \text{if } x \text{ is a reflection} \end{cases}$$

2065 4

Prove that φ is a homomorphism from G to the multiplicative group $\{+1,-1\}$. What is the kernel of φ ? (6½)

(c) Determine all homomorphisms from \mathbb{Z}_{12} to \mathbb{Z}_{30} . (6½)

(2000)