This question paper contains 4+1 printed pages

Your Roll No.

9667

B.A./B.Sc. (Hons.)/III

R

MATHEMATICS: Paper XVII and XVIII (ii)

(Boolean Algebra)

Time: 2 Hours

Maximum Marks: 38

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt any two parts from each question except

Q. No. 3 and any one part of Q. No. 3.

All parts of every question carry equal marks.

- (a) Give an example of a sublattice of a lattice L which is not convex. Prove that the intersection of an ideal and a dual ideal of L, if non-empty, is a convex sublattice of L. 5
 - (b) Prove that every homomorphic image of a relatively complemented lattice is relatively complemented. 5

P.T.O.

2½

	(c)	(i)	Let M be a lattice with least element. Prove that the		
			kernel of a homomorphism from a lattice L onto M		
			is an ideal of L. 2½		
		(ii)	Let C be a congruence relation on a lattice L and		
		,	let L/C be the quotient lattice of L by C. Prove that		
		7	there exists a natural homomorphism of L onto		
			L/C. What is the kernel of this homomorphism, if L		
			has the least element?		
2.	(a)	If a,	b are any elements of a modular lattice, then prove		
		that	$[a \wedge b, a] \cong [b, a \vee b].$		
	(b)	(1)	Prove that a lattice of length two is modular. 21/2		
		(ii)	Prove that the cardinal product of two modular		

lattices is modular.

- (c) (i) Define a distributive lattice. Give an example of a modular lattice which is not distributive. 2½
 - (ii) Let L be a distributive lattice and $a, b \in L$. Show that $X = \{x \in L : x \land a = x \land b\}$ is an
- (a) If L is a Boolean algebra, then prove that any ideal of
 L equals the kernel corrésponding to one and only one
 congruence relation on L.
 - (b) (i) Prove that in a Boolean algebra:

ideal of L.

$$(a')' = a$$
, $(a \lor b)' = a' \land b'$
and $(a \land b)' = a' \lor b'$.

Hence show that a non-empty subset of a Boolean Algebra L is a subalgebra of L if it is closed under complementation and one of the two binary operations of meet and join.

- (ii) Find the conjunctive normal form of the. Boolean function $(x \land (y' \lor z)) \lor z'$ and hence find its disjunctive normal form from it.
- 4. (a) Simplify the Boolean function and draw the circuit: 5

 $(a' \wedge b' \wedge c) \vee (a' \wedge b \wedge c') \vee (a' \wedge b \wedge c)$

$$\vee (a \wedge b' \wedge c) \vee (a \wedge b \wedge c).$$

- (b) Show that the Boolean function $(a' \wedge b' \wedge c) \vee$ $(a \wedge b' \wedge c') \text{ represents a circuit using five switches. If}$ $(a' \wedge b' \wedge c') \text{ and } (a \wedge b' \wedge c) \text{ happen to be don't care}$ conditions, show that the circuit can be represented by only one switch.
- (c) Draw the bridge and series parallel circuit for the Boolean function:

$$(a \wedge b) \vee [a \wedge e \wedge (d \vee b')] \wedge [c \wedge (d \vee b')] \wedge (c \wedge e \wedge b)$$

9667

(5)

Find the Boolean expression (in CN form) that defines a

function, given by :

x	<i>y</i> .	z	-	ſ
0	. 0 `	0		1
0	0	l		0
0	i I	. 0		1
0	1	1		0
1,	0	. 0	v	0
1	0	1		0.
1	. 1	0		0
1	1	1.	•	l

9667