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3. Attempt any two parts from each question. 

1. (a) Show that d : R2 x R2 ~ R defined as follows is a metric on R2 

d(a,a) = 0 

For a::t:-b, 

(b) Define an isometry. Prove that 

(i) every isometry is injective 

(ii) inverse of a surjective isometry is also an isometry 
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(c) Suppose (X, d) is a metric space, a, b E X and S is a nonempty subset of 

X. Prove that 

ldist(a, S)- dist(b, S)l ~ d(a,b) ~ dist(a, S) + diam S + dist(b, S) (6+6) 

2. (a) Suppose X is a metric space and A and B are subsets of X with A c B. 

Prove that 

(i) An iso(B) c iso(A) 

(ii) acc(A) c acc(B) 

(b) Suppose A is a subset of a metric space X. Prove that diam(.A) - diam(A). 

Give an example to show that diam(A0
) * diam(A). 

(c) Suppose X is a metric space, S is a subset of X and a is an isolated point 

of S. Show that a is a boundary point of S if and only if a ~ iso(X). Also 

show that 

as= s n sc (6+6) 

3. (a) Suppose X is a metric space and S ~ X. Prove that S is the smallest closed 

superset of S. 

(b) (i) Suppose X is a metric space and S ~ X. Prove that S has empty 

interior, if, and only if, S has dense complement. 

(ii) Define an open cover for a metric space. Give an open cover for R 

endowed with the usual metric. 

(c) Prove that the square {a= (a
1

, a
2

) E R2 : a
1
, a

2 
E (-1,1)} is an open subset 

of R 2 with Euclidean metric. (6+6) 
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4. (a) Suppose (X, d) is a metric space, a E X and r E R+. Prove that 

8(b[a,r)) c {X EX: d( a,x} = r} 

Deduce that b[a, r) is an open set. 

(b) Suppose X is a metric space, z E X and {x
0

} is a sequence in X which 

converges to z in X. Prove that n {{ xn: n E S}, S ~ N, S infinite} = { z}. 

(c) Suppose X is a metric space, z E X and S is a nonempty subset of X. 

Prove t~at z E S if and only if there is a sequence in S that converges to 

z in X. (6Yz+6Yz) 

5. (a) Prove that every Cauchy sequence in a metric space is bounded. Is every 

convergent sequence also bounded ? 

(b) Suppose X is a nonempty set, (Y, e) is a nonempty metric space and 

B(X, Y), the collection of all bounded functions from X to Y endowed with 

its usual supremum metric. Suppose {fn} is a bounded sequence in B(X, Y) 

such that for each x E X the sequence {f (x)} converges in Y. Prove that 
n 

the function g : X ~ Y given by 

g(x) = limf
0
(x) 

for all x E X, is bounded. 

(c) Prove that a subset of a complete metric space is closed if and only if it is 

complete. (6Yz+6Yz) 

6. (a) Suppose X andY are metric spaces and f: X~ Y is continuous at every 

point of X. Prove that for every open set V ofY, the set f- 1 (V) is open in 

X. 

PTO. 
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(b) Suppose (X, d) and (Y, e) are metric spaces and {fn} is a sequence of 

continuous functions from X toY that converges uniformly to a function 

g : X ~ Y. Prove that g is continuous. 

(c) Suppose X is a metric space, S is a connected subset of X and A a subset 

of X such that S c A c S. Prove that A is connected. Deduce that the 

closure of a connected set is connected. (6\12+6\12) 

(2800) 
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