[This question paper contains 4 printed pages.]

Sr. No. of Question Paper	:	6620	D	Your Roll No
Unique Paper Code	:	235505		
Name of the Course	:	B.Sc. (Hons.) MAT	HE	MATICS
Name of the Paper	:	Linear Programmin	ng ar	nd Theory of Games (Paper V.4)
Semester	:	V		

Duration : 3 Hours

Maximum Marks : 75

Instructions for Candidates

- 1. Write your Roll No. on the top immediately on receipt of this question paper.
- 2. Attempt any two parts of each questions.
- 3. All questions carry equal marks.
- 1. (a) Prove that to every extreme point of the feasible region, there corresponds a basic feasible solution of the linear programming problem

Minimize z = cx

subject to $Ax = b, x \ge 0$.

(b) Solve the following linear programming problem by the simplex method starting with the basic feasible solution $(x_1, x_2) = (4, 0)$

Maximize $-x_1 + 2x_2$ subject to $3x_1 + 4x_2 = 12$ $2x_1 - x_2 \le 12$ $x_1 \ge 0, x_2 \ge 0$

(c) $x_1 = 1, x_2 = 1, x_3 = 1$ is a feasible solution of the system of equations

$$x_1 + x_2 + 2x_3 = 4$$

 $2x_1 - x_2 + x_3 = 2$

Is this solution basic feasible ? If not, reduce it to a basic feasible solution.

P.T.O.

6620

2. (a) Using two phase method, solve the linear programming problem

Minimize $z = 3x_1 + 2x_2 + x_3$ subject to $2x_1 + 5x_2 + x_3 = 12$ $3x_1 + 4x_2 = 11$

 x_1 is unrestricted, $x_2 \ge 0$, $x_3 \ge 0$.

(b) Using simplex method, solve the system of equations

 $3x_1 + 2x_2 = 4$ $4x_1 - x_2 = 6$

Also, find inverse of the coefficient matrix

$$\begin{bmatrix} 3 & 2 \\ 4 & -1 \end{bmatrix}.$$

(c) Using big-M method, solve the linear programming problem

Minimize $z = -x_1 - 3x_2 + x_3$ subject to $x_1 + x_2 + 2x_3 \le 4$ $-x_1 + x_3 \ge 4$ $x_3 \ge 3$ $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0.$

3. (a) (i) State and prove the Weak Duality Theorem.

(ii) Verify that the dual of the dual is primal.

Maximize
$$z = -8x_1 + 3x_2$$

subject to $x_1 - 6x_2 \le 2$
 $5x_1 + 7x_2 \le 4$
 $x_1 \ge 0, x_2 \ge 0$

6620

6

(b) Obtain the dual of the following primal problem :

Maximize $z = 7x_1 + 12x_2 + 10x_3$ subject to $3x_1 + 2x_2 - 4x_3 \le 1$ $x_1 + 4x_2 - 3x_3 \ge 3$ $-2x_1 - 8x_3 = 2$ $x_1 \le 0, x_2 \ge 0, x_3$ is unrestricted.

(c) Solve the following linear programming problem using duality :

Minimize	$z = 2x_1 + 9x_2 + x_3$
subject to	$x_1 + 4x_2 + 2x_3 \ge 5$
	$3x_1 + x_2 + 2x_3 \ge 4$
	$x_1 \ge 0, x_2 \ge 0, x_3 \ge 0$

4. (a) Solve the following transportation problem :

	D	D ₂	D ₃	D ₄	Supply
0,	10	2	20	11	15
0 ₂	12	7	9	20	25
0 ₃	4	14	16	18	10
Demand	5	15	15	15	

(b) Solve the following cost minimization assignment problem :

	Ι	II	III	IV	V
А	11	6	14	16	17
В	7	13	22	7	10
С	10	7	2	2	2
D	4	10	8	6	11
Е	13	15	16	10	18

6620

(i) Find the saddle point for the game having the following pay-off matrix : (c)

$$\begin{bmatrix} -3 & 1 & 2 \\ 1 & 2 & 1 \\ 1 & 0 & -2 \end{bmatrix}$$

_

(ii) Determine the range of values of p and q that will render (2,2) a saddle point for the game

2	4	5]
10	7	q
4	p	6

(a) Use dominance relation to reduce the following game to a 2 X 2 game, and 5. hence find the optimum strategies and value of the game

$$\begin{bmatrix} 2 & -2 & 3 \\ -3 & 5 & -1 \\ 1 & 3 & 2 \end{bmatrix}$$

(b) Solve graphically the rectangular game whose pay-off matrix is :

$$\begin{bmatrix} 2 & 2 & 3 & -1 \\ 4 & 3 & 2 & 6 \end{bmatrix}$$

(c) Reduce the following game to a linear programming problem and then solve by simplex method.

$$\begin{bmatrix} 2 & -2 & 3 \\ -3 & 5 & -1 \end{bmatrix}$$

(2800)