[This question paper contains 4 printed pages.]

Sr. No. of Question Paper	:	6619	D	Your Roll No
Unique Paper Code	:	235504		
Name of the Course	:	B.Sc. (H) MATHE	MATICS	– III
Name of the Paper	:	Algebra IV – Pape	er 5.3	
Semester	:	V		

Duration : 3 Hours

Maximum Marks: 75

Instructions for Candidates

- 1. Write your Roll No. on the top immediately on receipt of this question paper.
- 2. Attempt any five parts form question 1. Each part carries three marks.
- 3. Attempt any two parts from each of the questions 2 to 6. Each part carries six marks.
- 1. (a) Find the splitting field of $x^4 + x^2 + 1$ over \mathbb{Q} .
 - (b) Prove that $\sin \theta$ is constructible if and only if $\cos \theta$ is constructible.
 - (c) Prove that if a > 0 is constructible number, then \sqrt{a} is also constructible.
 - (d) Let T be the linear operator on $P_2(\mathbb{R})$ defined by T(f(x)) = f(x) + (x+1)f'(x). Find the characteristic polynomial of T.
 - (e) Let $V = P_3(\mathbb{R})$ be a vector space and T is defined by T(f(x)) = f'(x) + f''(x)be a linear operator on V. Test T for diagonalizability.
 - (f) Let T be a linear operator on \mathbb{R}^3 defined by T(a, b, c) = (-b + c, a + c, 3c). Determine the T cyclic subspace generated by $e_1 = (1,0,0)$.
 - (g) Let T be a linear operator on \mathbb{R}^2 defined by T(a,b) = (a + 2b, -2a + b). Find the characteristic polynomial of T.

6619

(h) Let T be a linear operator on a finite dimensional vector space. Prove that E_{λ} , the eigen space of λ , is T-invariant subspace, for any eigenvalue λ of T.

- (a) Let F be a field and let p(x) ∈ F[x] be irreducible over F. If a is zero of p(x) in some extension E of F, then F(a) is isomorphic to F[x]/⟨p(x)⟩.
 - (b) Suppose that F is a field and every irreducible polynomial in F[x] is linear. Show that F is algebraically closed.
 - (c) Show that a finite field cannot be algebraically closed.
- (a) If K is an algebraic extension of E and E is algebraic extension of F, then show that K is an algebraic extension of F and set of all elements of E that are algebraic over F is a subfield of E.
 - (b) Let E be algebraic closure of F. Show that every polynomial in F[x] splits in E.
 - (c) If g(x) is irreducible over GF(p) and g(x) divides x^{pn} x, prove that deg g(x) divides n.
- 4. (a) Find all eigenvectors of matrix $A = \begin{bmatrix} 1 & 1 \\ 4 & 1 \end{bmatrix}$.
 - (b) Let V be an inner product space and $S = \{w_1, w_2, ..., w_n\}$ be a linearly independent subset of V. Define $S' = \{v_1, v_2, ..., v_n\}$, where $v_1 = w_1$ and

$$\mathbf{v}_{k} = \mathbf{w}_{k} - \sum_{j=1}^{k-1} \frac{\left\langle \mathbf{w}_{k}, \mathbf{v}_{j} \right\rangle}{\left\| \mathbf{v}_{j} \right\|^{2}} \mathbf{v}_{j}$$

6619

for $2 \le k \le n$. Then show that S' is an orthogonal set of nonzero vectors such that span (S') = span(S).

- (c) For the data {(-3,9), (-2,6), (0,2), (1,1)}, use the least squares approximation to find the best fit quadratic polynomial. Also, compute the error.
- 5. (a) Let V be a finite-dimensional inner product space over F, and let g: V → F be a linear transformation. Then, prove that there exists a unique vector y ∈ V such that g(x) = (x.y) for all x ∈ V.
 - (b) Let $V = P(\mathbb{R})$ with the inner product

$$\langle f(\mathbf{x}), g(\mathbf{x}) \rangle = \int_{-1}^{1} f(t)g(t) dt$$

and consider the subspace $P_2(\mathbb{R})$ of V with the standard ordered basis β . Use Gram-Schmidt process to replace β by an orthonormal basis $\{v_1, v_2, v_3\}$ for $P_2(\mathbb{R})$.

- (c) Let T be a linear operator on a finite-dimensional vector space V, and let p(t) be a minimal polynomial of T. Show that a scalar λ is an eigenvalue of T if and only if p(λ) = 0.
- 6. (a) Let V be a finite-dimensional inner product space, and T be linear on V. Prove that if T is invertible, then T* is invertible and $(T^*)^{-1} = (T^{-1})^*$.
 - (b) Show that as a group $GF(p^n)$ is isomorphic to $\mathbb{Z}_p \oplus \mathbb{Z}_p \oplus ... \oplus \mathbb{Z}_p$ (n factors).

P.T.O.

6619

1

 $x, y \in V.$

4

(2800)