This question paper contains 4 printed pages]

Roll No.							
14011			l i	1		1 1	ĺ

S. No. of Question Paper: 5021

Unique Paper Code

: 237562

D

Name of the Paper

: STP-505/Statistical Inference

Name of the Course

: B.Sc. (Mathematical Sciences) Statistics

Semester

 $\cdot \mathbf{v}$

Duration: 3 Hours

Maximum Marks: 75

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt any Six questions.

- 1. (a) Define an unbiased and consistent estimate of a parameter in a distribution. Show that (i) $\frac{\sum x_i(\sum x_i 1)}{n(n-1)}$ is an unbiased estimator of θ^2 , (ii) $\frac{\sum x_i}{n} \left(1 \frac{\sum x_i}{n}\right)$ is a consistent estimator of $\theta(1-\theta)$ for the sample X_1, X_2, \ldots, X_n drawn on X which takes the values 1 or 0 with respective probabilities θ and $(1-\theta)$.
 - (b) Let X_1, X_2, \dots, X_n be a random sample from a uniform population on $[0, \theta]$. Find a sufficient estimator for θ .
- 2. (a) Mentioning the underlying regularity conditions, state the Cramer-Rao inequalty for the variance of an unbiased estimator T for $\gamma(\theta)$. Further, stating the condition for the equality sign in the Cramer-Rao inequality to hold, obtain its form.

- (b) Let $X_1, X_2,..., X_n$ be a random sample from a uniform population on $[0, \theta]$. Compute the reciprocal of $n \mathbb{E} \left[\frac{\partial \log f(x, \theta)}{\partial \theta} \right]^2$ and compare this with the variance of $\frac{(n+1)}{n} X_{(n)}$, where $X_{(n)}$ is the largest observation in the random sample. Comment on the result.
- 3. (a) Find the maximum likelihood estimate for the parameter λ of a Poisson distribution on the basis of a sample of size n. Also find its variance.
 - (b) On the basis of a random sample of size n drawn from Normal distribution $N(\theta, \sigma^2)$ obtain $100(1 \alpha)\%$ confidence interval for :
 - (i) θ when σ^2 is known,
 - (ii) θ when σ^2 is unknown,
 - (iii) σ^2 when θ is known,
 - (iv) σ^2 when θ is unknown.

41/2,8

Let p be the probability that a coin will fall head in a single toss. In order to test the hypothesis $H_0: p=\frac{1}{2}$ the coin is tossed 6 times and the hypothesis H_0 is rejected if more than 4 heads are obtained. Find the probability of error of first kind. If the alternative hypothesis is $H_1: p=\frac{3}{4}$, find the probability of the error of second kind.

- (b) Let x_1, x_2, \dots, x_n be a random sample of size n from Normal distribution . N(θ , σ^2), where σ^2 is known. Obtain UMP test for testing $H_0: \theta = \theta_0$ against $H_1: \theta > \theta_0$. Also find the power function of the test.
- 5. Explain the following terms:
 - (a) Errors of first and second kind;
 - (b) The best critical region;
 - (c) Power function of a test;
 - (d) Level of significance;
 - (e) Simple and composite hypotheses;
 - (f) Most powerful test;
 - (g) Uniformly most powerful test.

121/2

6. For the normal distribution with 0 mean and variance σ^2 obtain the best critical region for testing, $H_0: \sigma = \sigma_0$ against the alternative $H_1: \sigma = \sigma_1$. Also find the power of the best critical region when $\sigma_0 > \sigma_1$.

P.T.O.

- 7. (a) Let x_1, x_2, \dots, x_n be the observed values of the *n* random variables X_1, X_2, \dots X_n . Suggest a test for the hypothesis that the random variables are i.i.d.
 - (b) Let T_1 and T_2 be unbiased estimators of $\gamma(\theta)$ with efficiencies e_1 and e_2 respectively and $\rho = \rho_{\theta}$ be the correlation coefficient between them. Then show that :

$$\sqrt{e_1 e_2} - \sqrt{(1 - e_1)(1 - e_2)} \le \rho \le \sqrt{e_1 e_2} + \sqrt{(1 - e_1)(1 - e_2)}.$$
 4,8½

- 8. Write short notes on any three of the following:
 - (a) Median test;
 - (b) Difference between parametric and non-parametric tests;
 - (c) Properties of good estimators;
 - (d) Maximum likelihood method of estimation.

121/2