[This question paper contains 4 printed pages.]

Sr. No. of Question Paper	:	5022	D	Your Roll No
Unique Paper Code	:	236562		
Name of the Course	:	B.Sc. Mathematic	cal S	sciences
Name of the Paper	:	Network Analysis a	nd T	heory of Sequencing (ORP-5)
Semester	:	V		

Duration : 3 Hours

Maximum Marks : 75

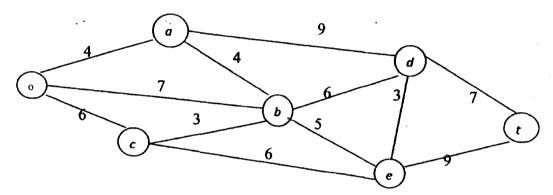
Instructions for Candidates

1. Write your Roll No. on the top immediately on receipt of this question paper.

- 2. Attempt any five questions.
- 3. All questions carry equal marks.
- (a) Explain the basic assumptions made while dealing with the sequencing problems. What is 'no passing ' rule in a sequencing algorithm. Distinguish between 'Flow shop' and 'Job shop' sequencing problem. (6)
 - (b) Determine the optimal sequence of jobs that minimizes the total elapsed time based on the following information —

(Order of processing of jobs is A B C D)

Jobs


		Ι	П	Ш	IV
	Machine A (in hr.)	15	12	16	17
Machine	Machine B (in hr.)	5	2	3	3
	Machine C (in hr.)	4	10	5	4
	Machine D (in hr.)	15	12	16	17

(9)

;

:

- 2. (a) Define the following terms
 - (i) Network
 - (ii) Path and chain
 - (iii) Cut and minimal cut
 - (iv) Flow augmenting path (9)
 - (b) Describe a 'maximal flow' problem in a network by giving a real life example and formulate it as a linear programming problem.
 (6)
- 3. (a) Explain shortest path problem and find the shortest path for the following network from o to t by Dijkstra's algorithm (8)

- (b) What do you understand by Minimal spanning tree in a network? Explain by giving its real life application and describe the procedure of finding Minimal spanning tree in a network.
- 4. A project consists of a series of tasks labeled A,B......H,I with the following relationship (W<X, Y means X and Y cannot start until W is completed; X,Y<W means W cannot start until both X and Y are completed. With this notation, construct the network diagram having the following constraints :</p>

A < D,E; B,D < F; C < G; B,G < H; F,G < I

Find also (i) the completion time of the project (ii) Earliest start & finish time of activities (iii) latest start & finish time of activities (iv) total, free and independent floats of activities.

The time in days of completion of each task is as follows -

Task	Α	В	C	D	Е	F	G	Н	Ι
Time	23	8	20	16	24	18	19	4	10

(15)

5. A project is consisting of the following activities –

	Duration (in days)						
Activity	Optimistic	Pessimistic	Most likely				
1-2	7	17	9				
1-3	10 .	60	20				
1-4	5	15	10				
2-5	50	110	65				
2-6	30	50	40				
3-6	50	90	55				
3-7	1	9	5				
4-7	40	68	48				
5-8	5	15	10				
6-8	20	52	27				
7-8	30	50	40				

- (a) Draw the project network.
- (b) Find the expected duration and variance of each activity. What is expected project length and critical path of the network.
- (c) Calculate the standard deviation of project length.
- (d) What is the probability of completing the project in 130 days.
- (e) Which due date has 98% chance of being met.

P.T.O.

;

(15)

6. (a) Explain the nature of travelling salesman problem and give its mathematical formulation. (7)

	S	X1	X2	X3	X4	t
S		10	12	8	0	0
X1	0	_	6	14	5	0
X2	0	0	-	12	9	6
X3	0	0	1		3	5
X4	0	0	0	1		7
t	0	0	0	0	· · 0	_

(b) A network has the following capacitance matrix :

Draw the diagram of the network . Using labeling technique, find the maximal flow in the network. (8)

(a) A salesman must travel from city to city to maintain his accounts. He leaves his home city A and has to visit each other cities and return home. The table shows the distances (in km.) between various cities. Determine the optimal tour.

	To–	А	В	С	D	E
	A	-	375	600	150	190
From	В	375	-	300	350	175
	С	600	300		350	500
	D	150	350	350	_	300
	Е	190	175	500	300	•

(7)

(b) Describe the algorithm to solve 2 jobs m machine job shop problem.

(8)

5022

: