This question paper contains 4 printed pages]

|--|

S. No. of Question Paper: 30

Unique Paper Code

: 237562

G

Name of the Paper

: Statistical Inference

Name of the Course

: B.Sc. (Mathematical Sciences) Statistics

Semester

: **V**

Duration: 3 Hours

Maximum Marks: 75

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt any six questions.

All questions carry equal marks.

- 1. (a) Explain the following terms:
 - (i) Type I and Type II errors
 - (ii) Simple and composite hypothesis.
 - (b) Define a sufficient statistic for the unknown parameter $\gamma(\theta)$. Let $x_1, x_2, ..., x_n$ be a random sample of size n from normal distribution $N(\mu, \sigma^2)$. Find sufficient estimators for μ and σ^2 .
- 2. (a) Let T_1 and T_2 be the two estimators of $\gamma(\theta)$ with variances σ_1^2 , σ_2^2 and correlation coefficient ρ . What is the best unbiased linear combination of T_1 and T_2 ? Find the variance of such a combination.

(2)

30

- (b) Develop a general method for constructing confidence interval. Construct a $100(1-\alpha)\%$ confidence interval for the difference of means of two normal populations with an unknown but common variance, given two independent samples of sizes n_1 and n_2 from the two populations $N(\mu_1, \sigma^2)$ and $N(\mu_2, \sigma^2)$.
- 3. (a) In random sampling from a normal population $N(\mu, \sigma^2)$, find the maximum Likelihood Estimators for :
 - (i) μ when σ^2 is known
 - (ii) σ^2 when μ is known
 - (iii) μ and σ^2 .
 - (b) Let p be the probability that a coin shows head in a single toss in order to test

$$H_0: p = \frac{1}{2} \text{ against } H_1: p = \frac{3}{4}.$$

The coin is tossed 6 times and H_0 is rejected if more than 4 heads are obtained. Find the probability of Type I error and power of the test.

- 4. Let $x_1, x_2, ..., x_n$ be a random sample of size n from normal distribution $N(\theta, \sigma^2)$ where σ^2 is known. Obtain UMP test for testing $H_0: \theta = \theta_0$ against $H_1: \theta > \theta_0$. Also find the power function of the test.
- 5. (a) Describe in brief the method of moments for estimating the parameters.

(b) For the distribution

$$d\mathbf{F} = \begin{cases} \beta \exp(-\beta(x-\gamma))dx, & x \ge \gamma \\ 0, & x < \gamma \end{cases}$$

show that for a null hypothesis

$$H_0: \beta = \beta_0, \gamma = \gamma_0$$

and an alternative

$$H_1: \beta = \beta_1, \gamma = \gamma_1,$$

the best critical region is given by:

$$\overline{x} \leq \frac{1}{\beta_1 - \beta_0} \left\{ \gamma_1 \beta_1 - \gamma_0 \beta_0 - \frac{1}{n} \log k + \log \frac{\beta_1}{\beta_0} \right\}$$

provided that admissible hypothesis is restricted by the condition $\beta_1 \ge \beta_0$, $\gamma_0 \ge \gamma_1$.

- 6. (a) What are the advantages and disadvantages of the parametric and the non-parametric approaches to the theory of statistical inference?
 - (b) A random sample $x_1, x_2, ..., x_n$ is drawn from a normal population with mean μ and variance σ^2 , (σ^2 is known). Obtain an MVB estimator for μ .
- 7. (a) What do you understand by point estimation? When would you say that estimate of a parameter is good? In particular, discuss any two properties of an estimator in detail, giving one example for each.

(4)

(b) Let $x_1, x_2, ..., x_n$ be the observed values of the *n* random variables $X_1, X_2, ..., X_n$. Develop run test for testing the hypothesis that the random variables are i.i.d.

- 8. Write short notes on any two of the following:
 - (a) Properties of good estimators
 - (b) Maximum likelihood method of estimation
 - (c) Median test.

30