This question paper contains 4 printed pages.] Your Roll No. 1446 B.Sc. (Hons.)/I MICROBIOLOGY—Paper II (Biochemistry and Instrumentation) (Admissions of 2004 and onwards) Time: 3 Hours Maximum Marks: 60 (Write your Roll No. on the top immediately on receipt of this question paper.) Attempt five questions in all, selecting at least two questions from each Section. Attempt Section A and Section B on separate answer books. All questions carry equal marks. SECTION-A 1. (a) Name the following: (i) Optically inactive sugar (ii) Most basic amino acid (iii) An essential fatty acid (iv) Non-standard amino acid

(v) An unusual nitrogenous base present in t-RNA

polypeptide.

(vi) Reagent used for determination of N-terminal of a

4

 $1 \times 6 = 6$

14	40	(2)	
	(b)	Draw structure of (any two):	
		(i) Hyaluronate	
		(ii) Cholesterol	
		(iii) Sphingomyelin	
		(iv) GTP $3 \times 2 = 6$	6
2.	Di	fferentiate between (any four):	
	(i)	Secondary and Tertiary structure of Protein	
	(ii)) Homo and Hetero polysacchaerides	
	(iii)	Coenzymes and Cofactors	
	(iv	y) Saponifiable and Non-saponifiable lipids	
	(v)	Isozymes and Multienzyme complex. $3 \times 4 = 1$	2
3.	(a)	What is steady state approximation? Under wha	t
		conditions is it valid?	3
	(b)	Which of the following lowers the Tm of duplex DNA	À
		and how?	3
	(c)	Which of the following releases more energy on it	s
		breakdown and why? Phosphoenal pyruvate or Acety	1
		· ·	3
	(d)	What is the ratio of proton donor to proton acceptor a	ıt
		pH 4, 5 and 6 for an acid with pK of 6?	3
4.	(a)	What are β-Benzymes? How are they produced?	3
	(b)	RNA is hydrolyzed with alkali treatment while DNA is	S
		not. Why?	3
	(c)	Why do phospholipids preedoninate cell membranes?	3

(3) 1446 (d) Which is more stable and why—A right handed or a left handed α-helix of polyglycine? 3 SECTION-B 1. (a) How are the mitochondria organized to be the power houses of the cell? 3 (b) How would you determine the molecular weight of a protein by electrophoresis? 2 (c) Differentiate between the following pairs: Prokaryotic and eukaryotic ribosomes (i) $2 \times 2 = 4$ Primary and secondary lysosomes (d) Define the following terms in context of gel filtration: (i) **Exclusion** limit (ii) Bed volume (iii) Void volume $1 \times 3 = 3$ 2. (a) State the principle of spectrophotometry. What are the applications of this technique. 2 + 2 = 4

(b) Define the following terms giving suitable examples or uses, which is applicable:

- (i) Fluor
- (ii) Microsomes
- (iii) Liposomes
- (iv) Cation exchanger $1\frac{1}{2} \times 4 = 6$
- (c) Chloroplasts exhibit a certain degree of functional anatomy. Comment.

[P.T.O.

1446 (4)

- 3. (a) Discuss any *two* of the following in relation to cell membrane:
 - (i) Asymmetric distribution of proteins
 - (ii) Mobility of membrane proteins
 - (iii) Effect of sterots on fluidity of membrane.

 $1\frac{1}{2} \times 2 = 3$

- (b) Where in the cell are the following enzymes localized?

 Mention the specific site within the organelle:
 - (i) Succinic acid dehydrogenase
 - (ii) Acid phosphatase
 - (iii) Rubisco
 - (iv) Adenylate kinase
 - (v) Glycosyl transferase
 - (vi) Peptidyl transferase

 $\frac{1}{2} \times 6 = 3$

- (c) Write in brief the principle and applications of any *two* of the following techniques:
 - (i) Isoelectric focussing
 - (ii) Affinity chromatography
 - (iii) X-ray crystallography

 $2 \times 3 = 6$