This question paper contains 4 printed pages]			
Your Roll No			
1034			
B.Sc. (Hons.)/II C			
MICROBIOLOGY—Paper X			
(Microbial Genetics and Molecular Biology)			
(Admissions of 2004 and onwards)			
Time: 3 Hours Maximum Marks: 60			
(Write your Reli No on the top unmediately on receipt of this question paper.)			
Attempt any five questions.			
All questions carry equal marks.			
1. What is the function of the following sequences or proteins			
(any twelve) ? $12\times1=12$			
(i) -35 region of promoters			
(ii) Shine-Dalgarno sequences			
(iii) DNA Helicase			

DNA Ligase

(n)

(v) CTD of RNA Polymerase II (vi)TATA Box (vii) Release Factor I (viii) IF-l (ix)DNA glycosylase (x) Photolyase (xi)T elements (xii) TF IIH (xiii) B clamp (xiv) CI repressor. 2. Write short notes on the following (any three): 3x4=12 (i) Generalized transduction (ii)Mismatch Repair (iii) Lac Operon (iv)rho dependent transcription termination (v) Replicative transposition

ŝ

3.	(a)	What are the ways of transformation of <i>E.coli</i> cells wi	th
		foreign DNA ?	4
	(b)	Explain the mechanism of replication of mitochondri	al
		genome.	3
	(c)	Explain the significance of Ames test and the vario	us
		components used in performing this test.	3
	(d)	What is function of DNA polymerase 1 ?	2
4.	Write	brief notes on the following (any four): 4×3=1	2
	(i)	Plasmid amplification	
	(ii)	Codon bias	
	(iii)	Catabolite repression	
	(iv) 1	Mutator genes	
	(v)	Tn 10.	
5.	(a)	Explain the Rolling Circle Model of replication.	3
	(b)	What is the post-translational modification	οí
		proteins ?	3

(4)

	(c)	Write the mechanism of 5° capping of eukaryotic m-RNA
		and its significance for the cell4
	(<i>d</i>)	Explain conditional mutations with the help of an
		example. 2
6.	(a)	Give an example of a plasmid found in yeast and write
		its salient features.
	(<i>b</i>)	Explain the mechanism of attenuation of trp operon with
		the help of suitable illustrations.
	(c)	List all possible reasons for the occurrence of sponta-
		neous mutations in a genome.