[This question paper contains 4 printed pages.]

1214

Your Roll No.

B.Sc. (Hons.)/I

A

PHYSICS - Paper IV

(Mathematics - I)

Time: 3 Hours

Maximum Marks: 38

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt any two parts from each question.

 (a) State the Cauchy's General Principle of convergence of a sequence and use it to discuss the convergence of the sequence <a_>> where

$$a_n = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!}$$
 (3)

(b) (i) Evaluate
$$\lim_{n\to\infty} \frac{1}{n} \left[1 + 2^{1/2} + 3^{1/3} + \dots + n^{1/n} \right]$$

(ii) Prove that if p > 0, then

$$\lim_{n\to\infty}\frac{n^k}{(1+p)^n}=0\tag{3}$$

(c) Let <a_n > be a sequence defined as

$$a_1 = 1$$
, $a_{n+1} = \left(\frac{3 + a_n^2}{2}\right)^{1/2}$, $\forall n \ge 1$.

Show that the sequence $\langle a_n \rangle$ converges to $\sqrt{3}$.

(3)

P.T.O.

2. (a) Discuss the convergence of two of the following series

(i)
$$\sum_{n=1}^{\infty} \cos \frac{1}{n}$$

(ii)
$$\sum_{n=1}^{\infty} \frac{n+1}{n^p}$$

(iii)
$$\sum_{n=1}^{\infty} \frac{2 \cdot 4 \cdot 6 \cdot - - - \cdot 2n}{1 \cdot 3 \cdot 5 \cdot - - - \cdot (2n+1)}$$
 (4)

- (b) Use the Cauchy's Integral Test to show that the series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges if p > 1 and diverges if $p \le 1$.
- (c) Define absolute convergence of a series and prove that every absolutely convergent series is convergent but not conversely. (4)
- 3. (a) (i) Prove that $\lim_{x\to 0} \frac{x e^{i/x}}{1 + e^{i/x}} = 0$.
 - (ii) Show that the function $f: \mathbb{R} \to \mathbb{R}$ defined as

$$f(x) = \begin{cases} x, & \text{if } x \text{ is rational} \\ 0, & \text{if } x \text{ is irrational} \end{cases}$$

is continuous at
$$x = 0$$
 (2+2=4)

- (b) Prove that $f(x) = x^2$ is not uniformly continuous on $[0, \infty[$. (4)
- (c) Using Taylor's Theorem, show that for x > 0,

$$x - \frac{x^3}{6} < \sin x < x. \tag{4}$$

4. (a) Show that the function $f: \mathbb{R}^2 \to \mathbb{R}$ defined as

$$f(x,y) = \begin{cases} \frac{x^3 + y^3}{x - y}, & x \neq y \\ 0, & x = y \end{cases}$$
 is discontinuous at $(0,0)$.

(b) Show that for the function $f: \mathbb{R}^2 \to \mathbb{R}$ defined as

$$f(x, y) = \begin{cases} \frac{xy(x^2 - y^2)}{x^2 + y^2}, & \text{if } (x, y) \neq (0, 0) \\ 0, & \text{otherwise} \end{cases}$$

$$f_{xy}(0, 0) \neq f_{yx}(0, 0). \tag{4}$$

- (c) Show that the function $f(x, y) = y^2 + x^2y + x^4$ has (0, 0) as the only critical point and that f(x, y) has a minimum at that point. (4)
- (a) If f and g are bounded and integrable on [a, b], then prove that their product fg is also bounded and integrable on [a, b].

- (b) Show that the function f(x) = [x] where [x] denotes the greatest integer $\le x$, is integrable on [0, 3].
 - Also find the value of $\int_0^3 [x] dx$. (4)
- (c) Define a Riemann Integrable function on a closed and bounded interval [a, b]. Using the definition

find
$$\int_0^1 x^2 dx$$
 (4)