Your Roll No.....

5703

B.Sc. (Hons.) PHYSICS/I Sem. B

Paper—CHCT-101: CHEMISTRY

(Admission of 2010 and onwards)

Time: 3 Hours Maximum Marks: 75

(Write your Roll No. on the top immediately on receipt of this question paper.)

Use separate answer-sheets for Section A and Section B.

Section A

Answer any four questions.

(a) Calculate the lattice energy of NaCl crystal from the following data by the use of Born-Haber cycle: 3½ Sublimation energy of Na(S) = 108.7 kJ mol⁻¹

Dissociation energy of Cl₂(g), D = 225.9 kJ mol⁻¹

Ionisation energy for Na(g), (I) = 489.5 kJ mol⁻¹

Electron affinity for Cl(g), (E) = -351.4 kJ mol⁻¹

Heat of formation of NaCl(ΔH_p) = -414.2 kJ mol⁻¹.

(b)	Which of the following complexes has higher value of					
	Δ_0 and why ?					
•	(i) $[V(H_2O)_6]^{2+}$ or $[Cr(H_2O)_6]^{3+}$					
	(<i>ii</i>) $[Rh(NH_3)_6]^{3+}$ or $[Ir(NH_3)_6]^{3+}$					
	(iii) $[CoCl_4]^{2-}$ Td or $[Co(CN)_4]^{2-}$ planar.					
(a)	Sketch the crystal field splitting in a square planar					
,	complex. 4					
(b)	Define John Teller theorem and give reasons why low					
	spin octahedral Ni(II) complex will result into square					
	planar complex.					
(a)	For[Cr(H ₂ O) ₆] ²⁺ , the mean pairing energy, P, is					
	found to be 23,500 cm ⁻¹ . The magnitude of Δ_0 is					
	13,900 cm ⁻¹ . Calculate CFSE for the complex ion					
	corresponding to high spin and low spin state. Which					
	state is more stable ? 2+2+1					
(b)	Draw the crystal field diagram of [Co(NH ₃) ₆] ³⁺ and					
	predict its magnetic moment. 21/2					
(c)	How will you account for paramagnetic character of					
	[CoF _z] ³⁻ on the basis of CFT. 2					

2.

3.

(a)	Sketch the MO diagram of NO and determine the bor
	order and predict the magnetic moment. 3+11/2-1
(b)	How will you use trans effect to synthesize cis ar
	trans- $[Pt(NH_3) NO_2.Cl_2]^{\Theta}$ starting with $[PtCl_4]^{2-}$
(a)	Explain the polarisation or π -bonding theory to account
	for trans effect in complex compounds.
(b)	Explain the ligand substitution reaction in octahedra
	complex by S _N ² mechanism.
(c)	What are closed packed structures and sketch the uni
	cell in CsCl lattice ?
(a)	Discuss the outer sphere mechanism for electron transfer
	reaction in complex compounds.
(b) .	Give examples of complementary and non-complementary
	electron transfer reactions. 21/2
(c)	Discuss the factors affecting the rates of the direct
	electron transfer reactions.
	(b)(c)(a)(b)

- 7. (a) What type of hybridization is possible with the molecules CH_4 , PF_5 and IF_7 ? 1×3 Point out the equivalent and non-equivalent hybrid orbitals in the above molecules. 1×3
 - (b) Apply Bent's rule of PCl₃F₂ and justify the placement of two F at the axial position.
 - (c) What is the relationship between Δt and Δ_0 ? 11/2

Section B

(Organic Chemistry)

Attempt any three questions.

1. (a) Assign E and Z notations to the following compounds and write the steps:

(i)
$$H_2N$$
 OH $C = C$ CH_3 OH

(b)	Convert	the	following	Fischer	formula	to	Sawhorse
	eclipsed	and	Sawhorse	staggere	d forms.		4

- (c) Write all possible Newman projection formulae for the various forms of n-butane and name them :
 - (i) Specify the dihedral angles
 - (ii) Specify the most stable and the least stable forms.
- 2. (a) (i) Draw the enantiomers of tartaric acid 2, 3-dihydroxybutane—1, 4 dioic acid.
 - (ii) Assign' R and S configurations to the chiral centres present in each case.

(Clearly write the steps used) 6+4

(b) Write the structures and names of optically active compounds with formula $C_3H_8O_2$.

3. (a) Accomplish the following transformations through a single step : 6 phenol → benzene (i) 1, 3-dinitrobenzene \rightarrow m-nitro aniline (ii) (iii) aminobenzene -> phenyl isocyanide (iv) benzoic acid +> benzyl alcohol. What are A, B and D ? Write their structures and (b) names : 4 (i) $NaOH \rightarrow B + gas$ with smell Aromatic A. $Br_2 + KOH$ →D (soluble in aq. HCl), Explain Saytzeff rule with suitable examples. (c) 2 Explain why: 4. 12 2, 4, 6-trinitrophenol is called picric acid? (a) Chlorine in vinyl chloride is less reactive than chlorine (b)

in allyl chloride?

- (c) The chair conformation of cyclohexane is more stable than the boat conformation.
- (d) One of the following solvents is not suitable for determining the specific rotation of a chiral unknown sample. Explain which one and why: water, methanol, 2-butanol.
- 5. (a) With reference to Baeyer's strain theory, calculate the angle strain in the following polygons:
 - (i) Cyclopropane
 - (ii) Cyclopentane
 - (iii) Cyclohexane.
 - (b) Define Hückel's rule and give one example each with explanation for:
 - (i) Aromatic
 - (ii) Anti-aromatic
 - (iii) Alicyclic
 - (iv) Heterocyclic compound.

- 6. (a) Write the monomer units present in natural rubber and show their arrangement as cis or trans.
 - (b) Write the components of Zieglar-Natta catalyst. 2
 - (c) Mention 2 advantages of using Zieglar-Natta catalyst in polymerization.
 - (d) What is diazonium chloride? How is it prepared in the lab?
- 7. (a) Write the products, name the reaction and outline the mechanism:

$$2C_6H_5$$
 CHO $\xrightarrow{40\%}$, A + B.

- (b) Nitration of toluene is much faster than nitration of nitrobenzene. Explain.
- (c) Specify the conditions under which different products are obtained in the halogenation of toluene (methyl benzene). Clearly write the proudcts and name them.