This question paper contains 4 printed pages]

	Roll No.	
S. No. of Question Paper	: 7876	
Unique Paper Code	: 222101	F-1
Name of the Paper	: Mathematical Physics-I (PHHT-101)	
Name of the Course	: B.Sc. (Hons.) Physics	
Semester	: I	
Duration : 3 Hours		Maximum Marks : 75

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt *five* questions in all including Q. No. 1 which is compulsory.

1. Do any *five* of the following :

- (a) Define a Jacobian. Calculate the Jacobian for a change from cartesian (x, y) to polar coordinates (r, θ) in two dimensions.
 - (b) What is Wronskian ? Calculate the Wronskian of x^n and $x^n \log x$.
 - (c) Find the minimum value of $u = x^4 + y^4 + z^4$ on the surface $xyz = c^3$, where c is a constant.
 - (d) Establish :

$$\delta(x^2 - a^2) = \frac{\delta(x - a) + \delta(x + a)}{2|a|}$$

(e) Show that the force :

$$\vec{\mathbf{F}} = r^2 \vec{r}$$

is conservative.

P.T.O.

5×3=15

5,5

5

5:

5

5

(2)

(f) Evaluate $\vec{\nabla} (\vec{F} \cdot \vec{r})$, where \vec{F} is a constant vector.

(g) Solve:

$$\cos(x+y) \, dy = dx$$

(*a*) Solve the following differential equations :

(i) $\sec^2 y \frac{dy}{dx} + 2x \tan y = x$

given that $y(1) = \frac{\pi}{4}$

(*ii*)
$$4\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + y = x(x + e^{-x/2})$$

Solve the differential equation : (*b*)

$$x^2 \frac{d^2y}{dx^2} - 2x \frac{dy}{dx} + 2y = x \log x$$

3. (a) Find the particular integral of the following differential equation :

$$\frac{d^2y}{dx^2} + 2 \frac{dy}{dx} + 5y = \frac{5}{4} e^{x/2} + 18 \cos 4x - 71 \sin 4x$$

(b) Solve :

$$x^2 \frac{d^2y}{dx^2} - 2x \frac{dy}{dx} - 4y = x^4$$

(c) Show that the following equation is exact and then solve it :

 $\{(x + 1) e^{x} - e^{y}\} dx = x e^{y} dy$

2.

4. (a) Evaluate the gradient ϕ , where ϕ is defined by :

$$\phi = \frac{\overrightarrow{p} \cdot \overrightarrow{r}}{r^3}$$

where \overrightarrow{p} is a constant vector.

(b) Prove :

5.

$$\frac{1}{2} \vec{\nabla} \times \left(\vec{\omega} \times \vec{r} \right) = \vec{\omega}$$

(c) Derive an expression for the divergence of \vec{A} in spherical coordinates.

(a) Find the unit normal to the surface :

$$Z = \sqrt{\frac{3}{2}x^2 + \frac{3}{2}y^2}$$

at the point $\left(\sqrt{\frac{2}{3}}, 0, 1\right)$.

(b) Which the following is not solenoidal?

(i)
$$\frac{B_0 r_0^2 (x\hat{i} + y\hat{j} + z\hat{k})}{(x^2 + y^2 + z^2)^{3/2}}$$

(*ii*)
$$B_0\left(\frac{yz\hat{i}}{x^2+y^2}-\frac{xz\hat{j}}{x^2+y^2}\right)$$

where B_0 and r_0 are constants.

(c) Obtain an expression for the curl of \vec{A} in cylindrical coordinates.

7876

5

6

5

4

6

P.T.O.

7876

7

(4)

6.

(a) State Green's theorem in the plane. Verify Green's theorem in the plane for : 8

$$\oint_{\mathcal{C}} [3x^2 - 8y^2] dx + [4y - 6xy] dy$$

where C is the boundary defined by :

x = 0, y = 0, x + y = 1.

(b) State the divergence theorem. Verify the divergence theorem for the vector field :

$$\vec{A} = 2x^2y\hat{i} - y^2\hat{j} + 4xz^2\hat{k}$$

taken over the region in the first octant bounded by :

$$y^2 + z^2 = 9, x = 2.$$

7. (a) State Stokes' theorem. Verify Stokes' theorem for the vector field :

$$\vec{A} = (2x - y)\hat{i} - yz^2\hat{j} - y^2z\hat{k}$$

where S is the upper half surface of the sphere $x^2 + y^2 + z^2 = 1$ and C is its boundary. 8

(b) Evaluate :

$$\iint_{n} \vec{A} \cdot \hat{n} \, dS \text{ where } \vec{A} = 18 z \hat{i} - 12 \hat{j} + 3 y \hat{k}$$

and S is that part of the plane 2x + 3y + 6z = 12 which is located in the first octant and \hat{n} is the unit outward normal to S. 7

7876