This question paper contains 7 printed pages]

Your Roll No.....

1207

## B.Sc. (Hons.) PHYSICS/II Sem. A

Paper—PHHT-205

## Electricity and Magnetism

Time: 3 Hours Maximum Marks: 75

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt five questions in all, including

Q. No. 1 which is compulsory.

- 1. Attempt any five of the following:
  - (a) Establish a relationship between the magnetic moment
    (M) and the angular momentum (L) of an electron revolving around the nucleus of an atom with linear velocity, v and orbit radius r.
  - (b) Evaluate the root mean square value of the following time varying voltage:
    - $e = 30.0 + 40.0 \sin \omega t + 40.0 \cos \omega t$ .
  - (c) Derive a relationship between three electric vectors  $\vec{E}$ ,  $\vec{P}$  and  $\vec{D}$ .

(d) What should be the value of R in the following network so that it could absorb maximum power from the 100 V source:

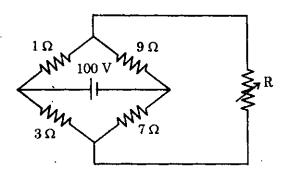



Fig. 1

- (e) A solid insulating sphere is charged with density  $\rho = k(1 r/R)$  C/m<sup>3</sup>, where k is a constant, r the distance from centre of the sphere and R the radius of the sphere. Evaluate the total charge contained in the sphere.
- (f) Prove the conservative nature of an electrostatic field.
- (g) A solid metal sphere of radius R is given a charge
  Q. Find electric potential at its centre.

- 2. (a) State and prove maximum power transfer theorem for a linear two terminal network.
  - (b) For a series circuit containing L, C and R, derive an expression for the band width (β) in terms of quality factor (Q) of the circuit.
  - (c) Calculate the current in the load resistance  $R_L$  of the following ladder network:

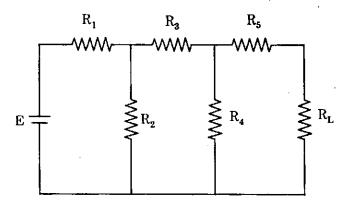



Fig. 2

(a) Derive Faraday's law of electromagnetic induction in differential form, i.e.:

$$\nabla \times \vec{E} = -\frac{d\vec{B}}{dt}$$
.

(b) Show that the effective inductance  $L_{eff}$  of two inductances  $L_1$  and  $L_2$  connected in parallel is given by:

$$L_{eff} = \frac{L_1 L_2 - M^2}{L_1 + L_2 \pm 2M}$$

where M is the mutual inductance between them.

(c) In the AC series LCR circuit shown below, calculate the power factor:

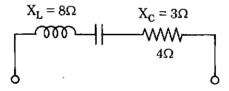



Fig. 3

4. (a) An electric field  $\overrightarrow{E}$  exists in a region that consists of two different dielectrics characterized by the permittivities  $\in$  1 and  $\in$  2. Establish the boundary conditions of  $\overrightarrow{E}$  and  $\overrightarrow{D}$  at the boundary separating two mediums.

(b) Derive the expression for electrostatic energy for a continuous volume charge distribution: 5

$$\mathbf{U} = \frac{1}{2} \int \overrightarrow{\mathbf{E}} \cdot \overrightarrow{\mathbf{D}} d\mathbf{V}.$$

(c) The uniform electric fields  $\overrightarrow{E}_1$  and  $\overrightarrow{E}_2$  shown below are near a dielectric-dielectric boundary but on opposite side of it. The relative permittivities of the dielectrics are  $\epsilon_1=4$  and  $\epsilon_2=4\sqrt{3}$ . If  $\theta_2=60^\circ$ , then find  $\theta_1$ .

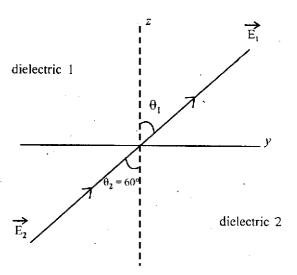



Fig. 4

5. (a) Show that the charge Q passing through a ballistic galvanometer is given by :

$$Q = \frac{T_0}{2\pi} \; i_s \; \theta_1 (1 + \lambda/2)$$

where  $T_0$  is the time period of free oscillations,  $i_s$  is the current sensitivity and  $\lambda$  is the logarithmic decrement.

(b) A very long thin wire is bent in the shape shown below. A direct current i is flown through the wire.
 Find the direction and the magnitude of the magnetic field at point O:

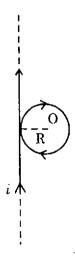



Fig. 5

| 6. | (a)   | Establish a relationship between the vector magneti                                      | C  |
|----|-------|------------------------------------------------------------------------------------------|----|
|    |       | potential $\overrightarrow{A}$ and the magnetic flux $\overrightarrow{B}$ through a give | n  |
|    |       | area.                                                                                    | 6  |
|    | (b)   | Derive an expression for the magnetic field at an axia                                   | ıl |
|    |       | point of a circular current carrying loop of radius a                                    | i. |
|    |       | Show that at far off points the circular loop behave                                     | S  |
|    | •     | as a magnetic dipole.                                                                    | 9  |
| 7. | Write | short notes on any three of the following:                                               |    |
|    | (a)   | Uniqueness theorem                                                                       | 5  |
|    | (b)   | Equation of continuity                                                                   | 5  |
|    | (c)   | Relation between $\vec{B}$ and $\vec{H}$                                                 | 5  |
|    | (d)   | Electric potential of an arbitrary point of an electri                                   | c  |
|    |       | quadrunole                                                                               | 5  |