This	question	paper	contains	4	printed	pages	ı
	7~000.011	Pariti	CONTRACTOR	•	pittica	P 45 - 1	

		Roll No.	
S. No.	of`C	Question Paper : 1584	
Unique Paper Code :		aper Code : 222204	c
Name	oftl	the Paper : Digital Electronics (PHHT-206)	
Name (oftŀ	the Course : B.Sc. (Hons.) Physics	
Semest	ter	: 11	
Duratio	on :	: 3 Hours	Maximum Marks: 75
		(Write your Roll No. on the top immediately on receipt of this quest	ion paper.)
		Attempt all five questions.	
1. A	Atte	empt any five of the following:	5×3=15
(a)	Draw the circuit for 4-bit odd parity generator.	
(b)	Define Common Mode Rejection Ratio (CMRR) for an Op-amp	p.
(c)	Define accuracy and resolution of D/A convertor.	· · · · · · · · · · · · · · · · · · ·
(d)	How many flip-flops are required to produce divide by 64 cour	nters ?
(e)	Define set up time and hold time in flip-flops.	ı
			P.T.O.

(f) Prove that:

$$(A+B)(\overline{A}+C)(B+C) = (A+B)(\overline{A}+C).$$

- (g) Subtract 20.25₁₀ from 34.75₁₀ using 2's complement method.
- (h) Draw the circuit diagram of clocked RS FF using NAND gates only.
- (a) Draw the circuit diagram of Astable multivibrator using IC555 timer and explain its operation. Obtain the expression for frequency of output waveform. Determine the condition under which 50% duty cycle is possible.
 - (b) For a 4-bit R-2R ladder D/A converter the input levels are logic 0 = 0 V and logic 1 = +10 V, find the :
 - (i) Output voltage caused by each bit.
 - (ii) Full scale output voltage of a ladder.
 - (iii) Percentage resolution.

71/2

()r

Draw the block diagram of CRO. Explain the function of:

- (i) Time base generator
- (if) Delay line
- (iii) Aquadag Coating.

71/2

- (a) What is the difference between open loop and closed loop gain of an op-amp? Plot transfer characteristics of inverting Amplifier of gain of 10 if Op-Amp is given dual power supply of ±12 volts.
 - (b) Using Operational Amplifier, design a circuit for performing the following operation:

$$V_0 = -(V_1 + 4V_2 + 2V_3)$$

where V_0 is the output voltage; V_1 , V_2 and V_3 are the input voltages. $7\frac{1}{2}$

Or.

Describe how an operational amplifier is used to perform the mathematical operation of differentiation. What would be the expression for output if the input is given by:

$$V_{in} = V \sin \omega t$$
. $7\frac{1}{2}$

4. (a) Minimize the following logic function using K-map:

$$F(A, B, C, D) = \Sigma(0, 4, 7, 8, 10, 13, 15) + \Sigma d(2, 5, 12).$$

Write the minimized Boolean expression in sum of product form and realize it using 2-input NAND gates only.

7½

(b) What is a multiplexer? Implement the following function with 8×1 multiplexer:

$$F(A, B, C, D) = \Sigma(0, 1, 2, 3, 4, 8, 11, 14, 15).$$
 7½

Or.

What is a decoder? Design a full adder circuit using a decoder and OR gates. 7½ P.T.O.

(4)

5. (a) Draw the circuit diagram of JK-FF using NAND gates and give its truth table. How JK flip-flop can be converted to D flip-flop and T flip-flop? Explain with relevant block diagram? Give one application of each of D flip-flop and T flip-flop.

(b) Design a MOD-6 synchronous counter using block diagram of appropriate flip-flops. 71/2

Or

Draw the circuit diagram of 4-bit bi-directional shift register. Explain its operation. 71/2

1584