This question paper contains 4 printed pages.]

Your Roll No.

1220

B.Sc. (Hons.) / II

Ä.

PHYSICS - PAPER X

(Thermal Physics)

Time: 3 Hours

Maximum Marks: 38

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt five questions in all.

Question No. 1 is compulsory.

Attempt one question from each Section.

- 1. Attempt any **two** of the following:
- $3 \times 2 = 6$
- (a) Define four thermodynamic potentials.

 Why are they called as potentials?
- (b) Distinguish between first and second order phase transition, giving one example of each.

(ċ)	A reversible engine converts one-third of heat input to work. When the temperature of the sink is reduced by 100 °C, it is able to convert one-half of heat input to work. Find the temperatures of source and sink.			
(d)	Show that the enthalpy remains constant during Joule-Thomson expansion.			
	SECTION – A			
(a)	Derive Maxwell-Boltzmann distribution law for velocities of particles of a gas.	6		
(b)	Describe briefly any one method to verify the above law experimentally.			
(a)	What are transport phenomena?	2		
(b)	Derive an expression for coefficient of thermal conductivity of a gas on the basis of kinetic theory.	6		
	SECTION – B			
(a)	What do you mean by critical temperature of a gas? Obtain an expression for the critical constants of a van der Waal's gas and show that $\frac{RT_c}{P_cV_c}$ is the same for all	-		
	gases.	5		
(b)	Obtain the three adiabatic equations for an ideal gas.	3		

2.

3.

!	(b)	Explain which of the following processes can be thermodynamically reversible:	2
	~	(i) Isothermal evaporation of water at constant pressure.	
	,	(ii) Heating of water from 0 °C to 100 °C from a constant temperature source.	
	(c)	1 gm molecule of a perfect gas expands isothermally to four times its initial volume. Assuming total conversion of heat into work, calculate the change in its entropy. Given R = 8.314 J/mole K.	2
		SECTION - C	
6. ((a)	Prove the equivalence of Kelvin-Planck and Clausius statements of second law of thermodynamics.	
((b)	What do you mean by entropy? Show that for any thermodynamic process, the entropy either remains constant or increases.	.4
7. ((a)	State and prove Carnot theorem.	4
		It is claimed that an engine working on new heat engine cycle between temperatures 1400 °C and 30 °C receives 4.2 kJ/s of heat and develops a power of 3.675 kW.	4
		(i) Show that it is not possible.	4
		(ii) What change in condition(s) would validate the claim?	
1220	•	3 Р.Т.	О.

Derive an expression for Joule-Thomson coefficients for an ideal gas and a real gas.

5.

(a)

SECTION - D

- 9. (a) Derive an expression for work done by a magnetic system.

 3

 (b) Describe the principle and experiment
 - (b) Describe the principle and experiment related to production of low temperature by adiabatic demagnetization.