This question paper contains 4+2 printed pages]

Your Roll	No.	
-----------	-----	--

5717

B.Sc. (Hons.) PHYSICS/III Sem.

В

Paper PHHT-309

(Thermal Physics)

(Admission of 2010 and onwards)

Time: 3 Hours

Maximum Marks: 75

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt Five question in all including

Question No. 1 which is compulsory.

All questions carry equal marks.

- 1. Attempt any five questions:
 - (i) Calculate the work done for a quasistatic adiabatic process for an ideal gas.
 - (ii) State the necessary conditions for reversibility of a process.
 - (iii) Why is it not possible to attain absolute zero? Explain.

P.T.O.

(iv) Establish the relation:

$$U = F - T \left(\frac{\partial F}{\partial T} \right)_{\nu}$$

where symbols have their usual meaning.

(v) Prove that :

$$C_{\mathbf{P}} - C_{\mathbf{P}} = T \left(\frac{\partial P}{\partial T} \right)_{\mathbf{P}} \left(\frac{\partial V}{\partial T} \right)_{\mathbf{P}}$$

(vi) Show that :

$$\frac{E_S}{E_T} = \frac{C_P}{C_V} = \gamma$$

where \mathbf{E}_{T} and \mathbf{E}_{S} are isothermal and adiabatic elasticity respectively.

- (vii) The mass of a gas molecule is 5×10^{-26} kg and its mean velocity is 4×10^2 m/s at N.T.P. Calculate the average kinetic energy of the gas molecule at 0°C.
- (viii) Define mean free path. Obtain the relation.

$$\lambda = \frac{1}{\prod d^2 n}$$

2. (i) Define internal energy and taking U as a function of P and V show that:

(a)
$$\left(\frac{\partial U}{\partial P}\right)_{P} = \frac{C_{V}K_{T}}{\beta}$$

(b)
$$\left(\frac{\partial U}{\partial V}\right)_{P} = \frac{C_{P}}{V\beta} - P$$

where K_T is isothermal compressibility

β is volume expansivity

 C_{p} and C_{v} are specific heat at constant pressure and volume respectively.

- (ii) Explain the convective equilibrium of earth's atmosphere
 and derive the relation for variation of temperature with
 height in atmosphere.
- (i) State the second law of thermodynamics and explain
 its physical significance. Derive an expression for the
 efficiency of a reversible Carnot's engine.
 - (ii) State and prive the Carnot's Theorem. 9,6

P.T.O.

- (i) Show that entropy always increases for an irreversible process.
 - (ii) Calculate the increase in entropy when the temperature of 1 kg of ice is raised from -20°C to 20°C, given that :

Specific heat of ice = 2.09×10^3 Jkg⁻¹K⁻¹ Specific heat of water = 4.18×10^3 Jkg⁻¹K⁻¹ Latent heat of ice = 3.35×10^5 Jkg⁻¹

- (iii) Derive the Ehrenfest's equations for second order phase transitions.
- 5. (i) Derive Maxwell's four thermodynamic relations.
 - (ii) What is adiabatic demagnetisation? Obtain an expression for change in temperature during the process of adiabatic demagnetisation.
- 6. (i) Deduce an expression for most probable speed for a gas obeying Maxwell-Boltmann distribution of molecular speed of gases.

(ii) The mean free path of a molecule of a certain gas at temperature of 27°C is 5×10^{-5} m. If the radius of the gas is 2\AA , calculate the pressure exerted by the gas molecules.

Given $K_B = 1.38 \times 10^{-23} \times JK^{-1}$

- (iii) Derive an expression for coefficient of thermal conductivity of gases on the basis of kinetic theory of gases.

 4,3,8
- (i) Explain the term "critical temperature" of a gas. Discuss
 the results obtained by Andrews in his experiment on
 carbon dioxide.
 - (ii) Obtain the virial equation from the van der Waals equation of a gas. Give the importance of first two virial coefficients.
 - (iii) Express the van der Waals equation in terms of reduced parameters P, V, and T,
 - (iv) List the limitations of van der Waals equations. 7,3,3,2

(6),5717

8. What is Joule-Thomson effect? Obtain an expression for JouleThomson coefficient for a real gas. Determine the value of temperature of inversion in terms of van der Waals constants
'a' and 'b'. Discuss the Joule-Thomson effect in terms of deviation from Boyle's Law and Joule's Law.

5717 6 3,000