Sl. No. Of Ques. Paper: 8401C Unique Paper Code : 222301

Name of the Paper : PHHT-307 :Mathematical Physics - III

Name of the Course : B.Sc. (Hons.) Physics Part II

Semester : III

Duration : 3 hours

Maximum Marks : 75

Attempt <u>five</u> questions in all. Q.No. 1 is compulsory. Attempt two questions from each Section.

Q.1. Do any five parts.

- (a) Find the principal value of $\ell n(-1)$
- (b) Prove that $|z_1 z_2| \ge |z_1| |z_2|$
- (c) Locate and name the singularities in the finite z plane of

$$\frac{\ell n(z-2)}{(z^2+2z+2)^4}$$

- (d) Describe graphically the region $1 < |z + i| \le 2$
- (e) Find

$$\mathcal{L}t_{z\to e^{\frac{i\pi}{6}}}\left[\frac{\left(z-e^{\frac{i\pi}{6}}\right)\cdot z}{\left(z^6+1\right)}\right]$$

(f) Show that $P_n(1) = 1$

(g) Show that
$$J_n(-x) = (-1)^n J_n(x)$$

 (3×5)

SECTION A

- Q.2.
- (a) Prove that the function u = 2x(1-y) is harmonic. Find a function v such that f(z) = u + iv is analytic.

(b) Show that $f(z) = e^z$ is analytic and find its derivative by using first principle or writing f(z) in terms of u and v.

 $\left(7\frac{1}{2}\right)$

Q.3.

(a) If f(z) is analytic inside and on the boundary C of a simply connected region R, prove that

$$f^n(z_0) = \frac{n!}{2\pi i} \oint_C \frac{f(z)dz}{(z-z_0)^{n+1}}; \quad n=1,2\dots...$$
 where z_0 lies inside C
$$\left(7\frac{1}{2}\right)$$

b) Evaluate

$$\oint_C \frac{e^{3z}dz}{(z-\pi i)}$$

using Cauchy's integral formula; if C is an ellipse |z-2|+|z+2|=6 $\left(7\frac{1}{2}\right)$

Q.4

(a) If f(z) is analytic inside and on the boundary of the ring shaped region R bounded by two concentric circles C_1 and C_2 with centre at 'a' and respective radii r_1 and r_2 ($r_1 > r_2$), then for all z in R, prove that

$$f(z) = \sum_{n=0}^{\infty} a_n (z-a)^n + \sum_{n=1}^{\infty} \frac{a_{-n}}{(z-a)^n}$$

where symbols have their usual meanings.

(10)

(b) Expand $f(z) = \sin z$ in a Taylor Series about $z = \pi/4$.

Q.5.

Do any two parts using Contour Integration:

(a).
$$\int_0^\infty \frac{dx}{(x^4+x^2+1)}$$

(b).
$$\int_{0}^{2\pi} \frac{\cos 3\theta \ d\theta}{(5-3\cos\theta)}$$

(c).
$$\int_{0}^{\infty} \frac{\sin x}{x} dx$$

 $\left(7\frac{1}{2}\times2\right)$

SECTION B

Q.6.

Locate and name the singularities of the equation

$$x(x-1)y'' + (3x-1)y' + y = 0$$

and find its general solution using Frobenious method.

(5, 10)

Q.7.

(a) Prove the Rodrigue's formula for Hermite Polynomial $H_n(x)$,

$$H_n(x) = (-1)^n e^{x^2} \frac{d^n}{dx^n} (e^{-x^2})$$

$$(7\frac{1}{2})$$

(b) Derive the recurrence relation for Legendre Polynomial

$$(1 - x^{2})P'_{n}(x) = nP_{n-1}(x) - nxP_{n}(x)$$

$$\left(7\frac{1}{2}\right)$$

Q.8.

(a) Prove that

$$\int_{-\infty}^{\infty} e^{-x^2} H_m(x) H_n(x) dx = \sqrt{\pi} \, 2^n n! \, \delta_{mn}$$

where $H_m(x)$ and $H_n(x)$ are the Hermite Polynomial and $\delta_{mn} = 1$ if m = n= 0 if $m \neq n$.

 $\left(7\frac{1}{2}\right)$

(b) Show that

8401

$$J_{1/2}^{2}(x) + J_{-1/2}^{2}(x) = \frac{2}{\pi x}$$

where $J_{1/2}(x)$ and $J_{-1/2}(x)$ are Bessel's functions

 $\left(7\frac{1}{2}\right)$

2200