Sl. No. of Ques. Paper : 8403 C

Unique Paper Code : 222304

Name of Paper : PHHT-309 : Thermal Physics

Name of Course : B.Sc. (Hons.) Physics Part II

Semester : III

Duration: 3 hours Maximum Marks: 75

Attempt five questions in all. Question No. 1 is compulsory. All questions carry equal marks. Symbols have their usual meanings.

1. Answer any five of the following:

 $3 \times 5 = 15$

- (a) Apply zeroth law of thermodynamics to show that at equilibrium the systems are at the same temperature.
- (b) Show that an adiabatic is γ times steeper than an isothermal.
- (c) Calculate the change in entropy of a perfect gas in terms of pressure and temperature.
- (d) A domestic refrigerator is regarded as a reversible engine working between temperature of melting ice and that of atmosphere at 17°C. Calculate the energy required to freeze 1 kg of water at 0°C.
- (e) Derive Energy equation

$$(\partial U/\partial V)_T = T(\partial P/\partial T)_V - P$$

And show that for a van der Waals' gas

$$(\partial U/\partial V)_T = a/V^2$$

- (f) Calculate the molecular diameter of a gas whose mean free path of STP is 2.85×10^{-7} m. $5 \times 3 = 15$
- (a) State Kelvin-Planck and Clausius statements of second law of thermodynamics and prove that both the statements are equivalent.
 - (b) State and prove Carnot's Theorem.

8,7

- 3. (a) State and prove the Clausius inequality.
 - (b) Draw T-S diagram for a Carnot's cycle and discuss its physical significance.
 - (c) m gm of water at temperature T_1 is isobarically and adiabatically mixed with an equal mass of water at temperature T_2 . Show that change in entropy is

$$2m C_p \ln (T_{av}/\sqrt{T_1T_2})$$

where $T_{av}=(T_1+T_2)/2$.

6,3,6

- 4. (a) Define thermodynamic potentials (U, F, G and H) and give their physical significance. Using them, derive corresponding Maxwell's thermodynamic relations.
 - (b) Prove the relation

$$\beta_s / \beta_v = \gamma/(\gamma - 1)$$

where β is pressure coefficient of expansion.

8,7

- 5. (a) What are transport phenomena? Obtain an expression for diffusion coefficient of a gas on the basis of Kinetic theory of gases.
 - (b) Discuss Doppler's broadening of spectral lines as a consequence of the Maxwell's law of distribution of velocities.
- 6. (a) State the law of equipartition of energy and apply it to study the specific heat of monoatomic, diatomic and triatomic gases.
 - (b) Starting from the Maxwell's law of distribution of velocities obtain expressions for root mean square velocity (C_{rms}), average (\overline{C}) and most probable (C_{mp}) velocity. Hence show that $C_{rms} > \overline{C} > C_{mp}$.
 - (c) Obtain an expression for adiabatic lapse rate.

7,4,4

- 7. (a) Calculate critical constants for a van der Waals' gas. Show that value of critical coefficient is 2.67.
 - (b) Discuss the variation of force of surface tension with temperature with the help of Maxwell's relations.
 - (c) What do you understand by 1st and 2nd order phase transitions? Discuss with examples.

 7,4.4
- 8. (a) Explain Joule-Thomson effect. Show that Enthalpy remains constant in adiabatic throttling process.
 - (b) Derive expression of Joule-Thomson coefficient for:
 - (i) Perfect gas
 - (ii) van der Waals' gas.

6,9