This question paper contains 4 printed pages]

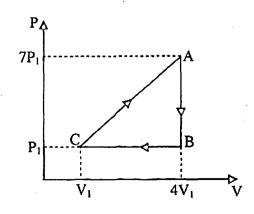
Roll No.						

S. No. of Question Paper	: 6209	
Unique Paper Code	: 222304	D,
Name of the Paper	: Thermal Physics (PHHT-309)	
Name of the Course	: B.Sc. (Hons.) Physics	
Semester	: III	

Duration: 3 Hours

Maximum Marks: 75

(Write your Roll No. on the top immediately on receipt of this question paper.).


Attempt *Five* questions in all, including Question No. 1 which is compulsory.

All questions carry equal marks.

1. Attempt any *five* of the following :

5×3=15

- (a) Define extensive and intensive thermodynamic variables. Give one example of each.
- (b) State zeroth law of thermodynamics. Hence define temperature.
- (c) Derive an expression for work done during the adiabatic expansion of an ideal gas.
- (d) In the cyclic process shown by the following figure, find the work done by the gas in one cycle :

P.T.O.

(e) The temperature inside a refrigerator is maintained at 7°C. If room temperature is 34°C, calculate the coefficient of performance of the refrigerator.

6209

- (f) Prove, using Maxwell's thermodynamic relations, $\left(\frac{\partial C_V}{\partial V}\right)_T = 0$ for a real gas.
- (g) Using law of equipartition of energy, show that values of $\gamma = \frac{C_P}{C_V}$ for mono-atomic and diatomic gases are 1.66 and 1.4 respectively.
- (*h*) Calcualte the mean free path of molecules of a gas when the number density is 3×10^{25} molecules m⁻³ and diameter of each molecule is 2Å.
- (a) Applying first law of thermodynamics, obtain relation between pressure and volume for an ideal gas undergoing adiabatic process. Hence, write relation between pressure and temperature and also volume and temperature.
 - (b) One mole of an ideal gas ($\gamma = 1.4$), initially kept at 17°C, is adiabatically compressed so that its pressure becomes 10 times its original value. Calculate : 6
 - (*i*) Its temperature after compression
 - (*ii*) Work done on the gas.

2.

- 3. (a) What are Kevlin-Planck statement and Clausius statement of second law of thermodynamics ? Show that both the statements are equivalent.
 9
 - (b) Discuss Carnot's reversible cycle that an ideal gas undergoes in Carnot's engine. Derive an expression for efficiency of the engine in terms of temperatures T₁ and T₂ of source and sink respectively.

(

- (*a*) Distinguish between first order and second order phase transitions. Hence obtain Clausius-Clapeyron's equation.
- (b) Calculate change in boiling point of water when the pressure is increased by 1 atm (10^5 N/m^2) . The normal boiling point of water at atmospheric pressure is 373 K, specific volume of steam = 1.671 m³ kg⁻¹, specific volume of water = 0.001 m³ kg⁻¹ and latent heat of steam = 2.268 × 10⁶ Jkg⁻¹, 3
- (c) Show that there is always an increase in entropy during an irreversible process. 3
- (a) Using Maxwell's thermodynamic potentials, derive Maxwell's four thermodynamical relations.
 - (b) Using appropriate Maxwell's thermodynamic relations, prove :

(*i*)
$$C_{P} - C_{V} = T \left(\frac{\partial P}{\partial T}\right)_{V} \left(\frac{\partial V}{\partial T}\right)_{P}$$

(*ii*)
$$\left(\frac{\partial \mathbf{U}}{\partial \mathbf{V}}\right)_{\mathbf{T}} = \mathbf{T}\left(\frac{\partial \mathbf{P}}{\partial \mathbf{T}}\right)_{v} - \mathbf{P}.$$

4.

5.

6.

- (a) Derive Maxwell-Boltzmann's distribution law of molecular velocities for a perfect gas.
 Hence find the expression for the most probable velocity and root mean square velocity.
 - (b) Discuss Stern's experiment for verification of this law.
 - (c) The mean free path, λ , of molecules of a gas at pressure P and temperature T is 3 × 10⁻⁵ cm. Calculate λ for the conditions : 3
 - (i) P, 2T and
 - (*ii*) 2P, T.

P.T.O.

3

6

7. (a) What is Joule-Thomson effect ? Derive an expression for Joule-Thomson coefficient μ,
 for a real gas obeying van der Waals' equation.

(4

- (b) Discuss the cases when μ is negative, positive and zero. Obtain the expression for temperature of inversion of the gas. Explain why hydrogen and helium show heating effect at ordinary temperatures while other gases show cooling effect.
- 8. (a) Discuss general behaviour of real gases on the basis of Andrew's experiment on CO₂.
 Define critical temperature.
 6
 - (b) Using van der Waals' equation of state, find expressions for critical temperature (T_C), critical pressure (P_C) and critical volume (V_C) in terms of van der Waals' constants 'a' and 'b'. Hence prove that for real gases $\frac{RT_C}{P_CV_C} = \frac{8}{3}$, where 'R' is universal gas constant.

Values of constants :

Boltzmann's constant, $k = 1.38 \times 10^{-23} \text{ JK}^{-1}$

Universal gas constant, $R = 8.31 \text{ Jmol}^{-1} \text{ K}^{-1}$.

6209

6209