This question paper contains 4 printed pages]

			 	 _	 	 		
Roll	No.							
14011	140.	1 1		1			1	

S. No. of Question Paper: 1465

Unique Paper Code : 2221301

F-7

Name of the Paper

: Mathematical Physics II (439)

Name of the Course

: B.Sc. (H) Physics Admitted Previously under FYUP

Semester

: III

Duration: 3 Hours

Maximum Marks: 75

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt five questions in all.

Question No. 1 is compulsory.

1. Attempt any five questions:

 $3 \times 5 = 15$

- (a) Show that an even function can have no sine terms in its Fourier expansion.
- (b) Write Fourier sine series of function f(t) having period 2T and find its Fourier coefficient.
- (c) Write Legendre's Equation and show that:

$$P'_n(1) = \frac{1}{2}n(n+1).$$

(d) Show that:

$$J_{-\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \cos x.$$

(e) Reduce the following differential equations to Bessel equation:

$$x^{2}\frac{d^{2}y}{dx^{2}} + x\frac{dy}{dx} + (kx^{2} - n^{2})y = 0.$$

(f) Evaluate:

$$\int_0^1 (x \ln x)^3 dx.$$

- (g) Write three-dimensional Laplace's equation in spherical coordinates. Mention a physical problem involving such Laplace's equation.
- 2. An alternating current after passing through a rectifier has the form :

$$i(\theta) = \begin{cases} I\sin\theta & 0 < \theta < \pi \\ 0 & \pi < \theta < 2\pi \end{cases}$$

State whether this function is odd, even or neither odd nor even.

(a) Sketch its graph from -4π to 4π .

1

(c) Find the Fourier series of the function.

12

2

3. (a) Obtain Parseval's Formula:

(b)

Formula:

$$\int_{-l}^{l} \left[\mathbf{F}(x) \right]^{2} dx = l \left\{ \frac{1}{2} a_{0}^{2} + \sum_{n=1}^{\infty} \left(a_{n}^{2} + b_{n}^{2} \right) \right\}$$

Assuming the Fourier series corresponding F(x) converges uniformly to F(x) in (-l, l) and the integral also exists.

(b) Obtain Fourier sine series for f(x) = 1 in $0 < x < \pi$ and deduce that :

$$\frac{\pi^2}{8} = 1 + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \dots$$

4. (a) Discuss the regular and irregular singular points of the following differential equation:

$$(1+x^2)x^2\frac{d^2y}{dx^2} + \frac{5dy}{dx} - y = 0.$$

(b) Using Frobenius method solve in series the Laguerre's differential equation: 12

$$x\frac{d^2y}{dx^2} + (1-x)\frac{dy}{dx} + \lambda y = 0$$

Here λ is a constant.

5. (a) Prove that:

$$(n+1)p_{n+1}(x) = (2n+1)xP_n(x) - nP_{n-1}(x).$$

- (b) Using (a) find $P_3(x)$, where $P_0(x) = 1$ and $P_1(x) = x$.
- (c) Prove that:

$$\int_{-1}^{1} P_m(x) P_n(x) dx = 0 \quad \text{if } m \neq n.$$

6. (a) Verify that:

$$e^{\frac{x}{2}(t-\frac{1}{t})} = \sum_{n=-\infty}^{\infty} J_n(x)t^n.$$

(b) Using (a) show that:

$$J_n(0) = 0$$
 for $n = 1, 2, 3, \dots$

(c) Given:

$$\int_0^\infty \frac{x^{p-1}}{1+x} dx = \frac{\pi}{\sin p\pi} \quad \text{where } 0$$

Show that:

$$\Gamma(p)\Gamma(1-p) = \frac{\pi}{\sin p\pi}.$$

(d) Evaluate:

$$\int_0^\infty \frac{xdx}{1+x^6}.$$

7. A string is stretched and fastened to two points 'l' apart. Motion is started by displacing the string in the form:

$$u = a \sin \frac{\pi x}{l}$$

from which it is released at time t = 0. Find the displacement u(x, t) of any point at distance 'x' from one end and at any time 't'.