| |
 |
 |
 |
 |
 | | |----------|------|------|------|------|------|--| | Roll No. | | | | | | | S. No. of Question Paper: 1589 Unique Paper Code : 2 : 222401 C Name of the Paper : Mathematical Physics IV (PHHT-411) Name of the Course : B.Sc. (Hons.) Physics Semester : **IV** Duration: 3 Hours Maximum Marks: 75 (Write your Roll No. on the top immediately on receipt of this question paper.) Attempt Five questions in all taking at least one question from each Section. ## Section A 1. (a) Let $V = \mathbb{R}^3$. Determine whether or not W is a subspace of V, where: $$W = \{(a, b, c) : ab = 0\}.$$ - (h) Let V be the set of all polynomials of degree ≥ 3 . Determine if $V(\mathbf{R})$ is a vector space. - (c) Find a basis and the dimension of the solution space W of homogeneous system: 5,5,5 $$x + 2y - z + 3s - 4t = 0$$ $$2x + 4y - 2z - s + 5t \approx 0$$ $$2x + 4y - 2z + 4s - 2t = 0$$. - 2. (a) Consider T: $\mathbb{R}^3 \to \mathbb{R}^3$ defined by T(x, y, z) = (x + y, 2z, 0). Determine whether or not T is a linear transformation. - (b) Find the matrix representation of the operator $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by: $$T(x, y) = (3x - 4y, x + 5y)$$ relative to (i) usual basis : $e = \{e_1 = (1, 0), e_2 = (0, 1)\}$ (ii) $$f$$ -basis : $f = \{f_1 = (1, 3), f_2 = (2, 5)\}.$ 5.10 ## Section B - 3. (a) Show that matrix $\mathbf{A} = \begin{bmatrix} \sqrt{2}/2 & -i\sqrt{2}/2 & 0 \\ i\sqrt{2}/2 & -\sqrt{2}/2 & 0 \end{bmatrix}$ is a Unitary matrix. $\begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$ - (b) If H is a Hermitian matrix and U is a Unitary matrix, prove that U⁺¹ HU is Hermitian. - (c) Suppose λ is an eigen value of an invertible operator T. Show that λ^{-1} is an eigen value of T^{-1} . 5,5,5 4. (a) Determine the eigen values and eigen vectors of the matrix: $$A = \begin{bmatrix} 0 & 2 \\ 3 & -1 \end{bmatrix}$$ Can matrix A be diagonalized? If yes, find a diagonalizing matrix P and verify that P diagonalizes the given matrix A. - (h) An eigen value of a skew-Hermitian matrix is either zero or purely imaginary. 10,5 - 5. (a) Solve the following systems of differential equations using matrix method: $$y_1 = -y_1 + 4y_2$$ $$y_2 = 3y_1 - 2y_2$$ subject to the initial conditions $y_1(0) = 3$ and $y_2(0) = 4$. (b) Verify Cayley-Hamilton theorem for matrix: $$\mathbf{A} = \begin{bmatrix} 5 & 4 \\ & \\ 1 & 2 \end{bmatrix}$$ and hence find A⁻¹. 10,5 ## Section C 6. Consider a uniform flexible chain hanging from a support under the action of gravity. At time t = 0, the chain is given an arbitrary displacement $y(x, 0) = y_0(x)$ and is released from rest. Establish the wave equation for this system and solve it to determine the displacement y(x, t) at a later time t and describe the first two fundamental modes of vibration. Here x is the vertical distance measured from the free end of the chain and y(x, t) is the displacement in the transverse direction. (4) 1589 7. Derive the heat conduction equation. Solve the equation to find the temperature u(x, t) in a bar of length L, which is perfectly insulated, also at ends at x = 0 and x = L, i.e.: $$\frac{\partial u}{\partial x}\Big|_{x=0} = \frac{\partial u}{\partial x}\Big|_{x=L} = 0$$ and $$u(x, 0) = f(x).$$ Find solution to Laplace's equation in spherical coordinates which are independent of φ. Hence define surface harmonic and surface zonal harmonic.