[This question paper contains 4 printed pages.]

Sr. No. of Question Paper: 948 E Your Roll No.....

Unique Paper Code : 222403

Name of the Course : B.Sc. (Hons.) Physics

Name of the Paper : Numerical Analysis [PHHT-414]

Semester : IV

Duration: 3 Hours Maximum Marks: 75

Instructions for Candidates

1. Write your Roll No. on the top immediately on receipt of this question paper.

- 2. Question No. 1 is compulsory.
- 3. Attempt any four questions from the rest.
- 4. Scientific calculator (non-programmable) are allowed.
- 1. Attempt any five questions: $(5\times3=15)$
 - (a) Explain why Newton-Raphson method is also called method of tangent?
 - (b) Differentiate between round-off and truncation error. Give examples.
 - (c) Under what conditions do the Gauss Seidel method converge?
 - (d) If f(x) = ax, show that $(E + E^{-1})f(x) = 2 f(x)$, where E is shift operator.
 - (e) Given $\frac{dy}{dx} = -y$ with y(0) = 1. Using step size h = 0.01, find y(0.01) by Euler Method.
 - (f) Give geometrical interpretation of Trapezoidal rule.

- (g) What are forward and backward differences in a difference table? How are they related?
- 2. (a) Using bisection method determine the root of the equation $y = x^3 x^2 2x + 1$. Perform four iterations and tabulate for $x \in [-2,0]$.
 - (b) Solve following equations using Gauss-elimination method:

$$x_1 + 2x_2 + x_3 = 1$$

 $2x_1 - x_2 + 2x_3 = -3$
 $x_2 + 3x_3 = 1$

(c) Given actual value of x = 5/3 and y = 1/3. Use five digit floating point representation to write floating form of x & y. Calculate relative and absolute error for

(i)
$$x + y$$
 and (ii) $x \times y$. (3×5=15)

3. (a) Solve the following by Gauss Seidel method (Perform only three iterations with initial guess as $x_0 = 0$, $y_0 = 0$, $z_0 = 0$)

$$27x + 6y - z = 54$$

 $6x + 15y + 2z = 72$
 $x + y + 54z = 110$

(b) A particle is moving along straight line. The displacement (x) at some time (t) given below

Time (t) sec	Displacement (x) km	
0	5	
1	8	
2	12	
3	17	
4	26	

Find the velocity and acceleration at t = 4 sec.

(c) Using Iterative method, find the dominant eigenvalue and the corresponding eigenvector of the following matrix

$$\begin{bmatrix} 3 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 3 \end{bmatrix}$$
 with initial eigenvector
$$\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
 (3×5=15)

4. (a) If $[x_1, x_2, x_3]$ represents divided difference of second order then show that

$$[x_1, x_2, x_3] = \frac{y_1}{(x_1 - x_2)(x_1 - x_3)} + \frac{y_2}{(x_2 - x_1)(x_2 - x_3)} + \frac{y_3}{(x_3 - x_1)(x_3 - x_2)}$$

(b) Using interpolation find the points of maxima and minima for the following data

X	y
–1	6
1	-4
3	. 10

(c) A curve is drawn to pass through the points given by the following table

X	y
1	2
1.5	2.4
2	2.7
2.5	2.8
3	3
3.4	3.6
. 4	2.4

Find $\int_{2}^{4} y dx$ using (i) Trapezoidal rule (ii) Simpson's 1/3 rule. (3×5=15)

- 5. (a) Deduce Newton's backward difference interpolation formula.
 - (b) Find the solution of following differential equation using second order Runge-Kutta method

$$\frac{\mathrm{d}y}{\mathrm{d}x} + 2xy^2 = 0$$

y(0) = 1 with h = 0.5 on interval [0,1].

(c) Fit the following data to a quadratic function:

X	y	
0	10	
2	15	
4	18	
6	25	(3×5=15)

- 6. (a) Using Gram-Schmidt Orthogonalization process obtain first four orthogonal polynomial fi(x) on [-1,1] with respect to weight w(x) = 1.
 - (b) Explain the concept and criteria of least square fit. Derive the normal equations for general polynomial for degree 'm' to a given set of 'n' data points.
 - (c) Evaluate the integral

$$\int_1^2 \frac{1}{(1+x)} \, \mathrm{d}x$$

using Gauss Legendre's three-point formula. Given the nodes and corresponding weights as

n	u _i	w
3	0	0.88889
	∓ 0.7746	0.55556

 $(3 \times 5 = 15)$