[This question paper contains 4 printed pages.]

Sr. No. of Question Paper: 2389 F-4 Your Roll No.....

Unique Paper Code : 2221403

Name of the Course : B.Sc. (Hons) Physics

Name of the Paper : Analog System and Applications

Semester : IV

Duration: 3 Hours Maximum Marks: 75

Instructions for Candidates

1. Write your Roll No. on the top immediately on receipt of this question paper.

2. Attempt five questions in all.

3. Question No. 1 is compulsory.

4. Non programmable calculators are allowed.

1. Attempt any five of the following

-(a) Draw the output-characteristics-of a solar cell and label important parameters.

(b) Define accuracy and resolution for an D/A converter

(c) What is the difference between differential and common mode inputs for an op-amp.

(d) The energy gap of the semiconducting material of an LED is 1.37eV. What is the wavelength of the emitted light?

(e) Show that $I_c = \beta I_B + (1 + \beta) I_{CBO}$

(f) Distinguish between Class A and Class B amplifiers with the help of load line and Q point.

(g) Define PIV, ripple factor and rectification efficiency of a rectifier.

 $(3 \times 5 = 15)$

- 2. (a) Obtain an expression for the barrier width of a p-n junction diode, assuming a step junction.
 - (b) In a Ge sample a donor type impurity is added to the extent of 1 atom per 10^8 Ge atoms. Find the concentration of electrons and holes in the sample. Given $N_i = 2.5 \times 10^{13}$ electrons / cm³ and number of Ge atoms is 4.41×10^{22} per cm³. (12,3)
- 3. (a) Explain the working of a center-tap full wave rectifier using suitable diagrams and obtain the expressions for
 - (i) ripple factor and
 - (ii) rectification efficiency.
 - (b) Find the current through the zener diode in the following circuit when load resistance R_L is:
 - (i) $30k\Omega$,
 - (ii) $5k\Omega$
 - (iii) 3kΩ

(11,4)

- 4. (a) Describe "load line" and "Q-point" of a transistor in CE configuration with appropriate diagram.
 - (b) Draw a diagram for the voltage divider bias circuit of an n-p-n transistor in CE configuration. Derive an expression for the stability factor (S) using Thevenin's equivalent circuit.
 - (c) Find the Q point of the fixed bias circuit with $R_c = 4k\Omega$, $R_B = 1.2 M\Omega$, $V_{CC} = 9.0 \text{ V}$, $V_{BE} = 0.2 \text{ V}$ and $\beta = 80$. (4,4,7)
- 5. (a) Using 'h' parameters, obtain expressions for current gain, voltage gain, input impedance and output impedance for transistor in CE configuration.
 - (b) For a 4-bit binary R-2R ladder D/A converter the input levels are 0=0V and 1=+10V. Find the output voltage caused by
 - (i) 0011,
 - (ii) 1001 and

- 6. (a) Describe the conditions for sustained oscillations in an oscillator? Derive an expression for the frequency of a Colpitt's oscillator.
 - (b) A phase shift oscillator has three identical RC sections $R_L = R = 10k\Omega$ and $C = 0.01\mu$ F. Determine the frequency of oscillation.— (12,3)
- (a) Explain with the help of an appropriate circuit diagram the working of a logarithmic amplifier using an op-amp.
 - (b) What would be the output of an op-amp in the inverting mode if input resistance is 1 k Ω and feedback resistance is
 - (i) 2 k Ω and

- (ii) $20k\Omega$ for a dc input signal of 1.5 V? $(V_{sat} = \pm 14 \text{ V})$.
- (c) Draw the circuit of an Op-amp as an integrator and find an expression for its output. Draw the output waveform when the input to the integrator is a square wave.

 (6,3,6)