This question paper contains 4 printed pages.]

Your Roll No.

1229

B.Sc. (Hons.) / III PHYSICS – PAPER – XIX

(Statistical Physics)

Time: 3 Hours

Maximum Marks: 38

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt five questions in all.

Question No. 1 is compulsory.

Answer one question from each unit.

(Symbols have their usual meanings.)

Attempt any five :

5 × 2

- (a) Under what conditions do the Bose-Einstein and Fermi Dirac distribution approach Maxwell Boltzmann distribution? Represent graphically.
- (b) What is the difference between a degenerate gas and a degenerate energy level?
 - (c) Give the units of Einstein's A & B coefficients.

- (d) Determine the wavelength corresponding to the maximum emissivity of a black body at a temperature equal to 300 K. Take b = 2898 µm K.
- (e) Discuss the variation of the chemical potential of a Fermi gas with temperature graphically.
- (f) Show that electron gas in a white Dwarf Star is strongly degenerate and relativistic in nature.
- (g) Show that absolute zero is unattainable on the basis of the third Law of Thermodynamic.

UNIT - I

- 2. Derive Sackur Tetrode equation for the entropy of an ideal monoatomic gas. How does it resolve the Gibb's Paradox?
- 3. (a) State and derive the law of equipartition of energy. Discuss its relevance and limitations with respect to the specific heat of a diatomic gas.
 - (b) Three distinguishable particles have to be accommodated in four available states. Find the number of ways in which this can be done if the particles obey Maxwell Boltzmann Statistics.

2

5

UNIT-II.

4. (a) Show that for an adiabatic expansion of a black body radiation

 $TV^{1/3} = constant.$

2

(b) Deduce Weins law for energy distribution in Black Body radiation.

5

 Define Saha's ionisation formula and discuss one of its important applications.

UNIT - III

6. (a) Explain Bose-Einstein condensation. Howdoes it differ from ordinary condensation? Derive an expression for the critical temperature at which this phenomenon sets in.

4

(b) Show that the molar specific heat of a strongly degenerate Bose gas is given as

$$C_V = 1.92 \text{ R} \left(\frac{T}{T_C}\right)^{3/2}$$

Represent it graphically. .

3

7. Derive the vibrational partition function for a diatomic molecule. Derive the expression for vibrational specific heat and show that it reduces to the classical value at high temperatures.

7

UNIT - IV

8. Derive Richardson Dishman equation for thermionic emission of electrons from a metal surface. How can it be used to calculate the work function of the metal?

7

(a) Plot and explain the variation of the distribution function for a Fermi gas at T = 0 K and T > 0 K. Obtain therein the expression for Fermi energy and pressure for a completely degenerate Fermi gas.

5

(b) Calculate the temperature at which there is 1% probability that a state with an energy 0.5 eV above the Fermi energy will be occupied by an electron.

2