This question paper contains 7 printed pages]

Your Roll No.....

1227

B.Sc. (Hons.)/III

A

PHYSICS—Paper XVII

(Mathematical Physics—III)

Time: 3 Hours

Maximum Marks: 38

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt Five questions in all.

Question No. 1 is compulsory.

Attempt one question from each Section.

1. Attempt any five of the following:

5×2

- (a) Let $V = R^3$. Determine if W is a subspace of V where $W = \{(a, b, c) : a + b + c = 0\}.$
- (b) Let V be the vector space of functions from R into R. Show that f, g, $h \in V$ are independent where $f(t) = \sin t$, $g(t) = \cos t$, h(t) = t.
- (c) If H is a Hermitian matrix, prove that e^{iH} is unitary.
- (d) If $F(\alpha)$ is the Fourier transform of f(t), find the Fourier transform of $\{f(t) \cos at\}$.

(e) Prove that

$$x\delta'(x) = -\delta(x)$$

where $\delta(x)$ is the Dirac Delta function.

- (f) Show that there is no isotropic tensor of order one except the null vector.
- (g) Prove that

$$\left\{\int_{0}^{t} \mathbf{F}(u) \ du\right\} = \frac{f(s)}{s}$$

where $f(s) = L\{F(t)\}$.

Section A

(a) Find the dimension and a basis of the solution space
 W of the homogenous system :

$$x + 2y_{r} + 2z - s + 3t = 0$$

x + 2y + 3z + s + t = 0

$$3x + 6y + 8z + s + 5t = 0$$

(b) Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be defined by

$$T(x, y) = (2x - 3y, x + 4y).$$

Find the matrix of T w.r.t. basis $\{f_1 = (1, 3), f_2 = (2, 5)\}$ of \mathbb{R}^2 .

- 3. (a) Let W be the subspace of R^4 generated by the vectors (1, -2, 5, -3), (2, 3, 1, -4) and (3, 8, -3, -5).
 - (i) Find a basis and dimension of W.
 - (ii) Extend the basis of W to a basis of the whole space \mathbb{R}^4 .
 - (b) Let T be the operator on R^3 defined by T(x, y, z) = (2x, 4x y, 2x + 3y z).
 - (i) Show that T is invertible;
 - (ii) Find a formula for T^{-1} .

Section B

4. (a) Using the matrix method, solve the following system of equations:

$$\dot{x}_1 = 2x_1 + 2x_2 + x_3$$

$$x_2 = x_1 + 3x_2 + x_3$$

$$\dot{x}_3 = x_1 + 2x_2 + 2x_3$$

with the initial conditions:

$$x_1(0) = x_2(0) = 2$$
, and $x_2(0) = 1$.

- (b) Show that eigenvalues of a unitary matrix are unimodular.
- (a) Find A⁻¹ using Caley-Hamilton theorem for the matrix
 A where

$$A = \begin{pmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix}$$

4,3

(b) Find the eigenvalues and eigenvectors of the matrix :

$$\begin{pmatrix}
\cos\theta & -\sin\theta \\
\sin\theta & \cos\theta
\end{pmatrix}.$$

Section C

6. (a) Given

$$T_{mn} = \begin{pmatrix} -xy & -y^2 \\ & & \\ x^2 & & xy \end{pmatrix}$$

Show whether T_{mn} is a tensor or not. Verification may be done for only one of the components.

(b) If T_{ij} is a skew-symmetric tensor of order two, prove that

$$(\delta_{ij}\delta_{lk}+\delta_{il}\delta_{jk})T_{ik}=0.$$

(c) Show that

$$\in_{ijk} A_j A_k = 0$$
 4,2,1
P.T.O..

7. (a) Using tensor methods, verify the identity

$$\overrightarrow{\nabla}(\overrightarrow{A} \cdot \overrightarrow{B}) = \overrightarrow{A} \times (\overrightarrow{\nabla} \times \overrightarrow{B}) + \overrightarrow{B} \times (\overrightarrow{\nabla} \times \overrightarrow{A}) + (\overrightarrow{A} \cdot \overrightarrow{\nabla}) \overrightarrow{B}$$
$$+ (\overrightarrow{B} \cdot \overrightarrow{\nabla}) \overrightarrow{A}.$$

- (b) Show that we can associate a vector with any antisymmetrical tensor of order two.
- (c) Show that gradient of a scalar function is a tensor of order one.

Section D

8. (a) Using convolution theorem for Fourier transform, solve:

$$\int_{-\infty}^{\infty} \frac{y(u)du}{(x-u)^2 + a^2} = \frac{1}{x^2 + b^2}, \, 0 < a < b.$$

(b) Solve:

$$y'' + y = t$$
, $y(0) = 1$, $y'(0) = -2$.

by method of Laplace transforms.

- 9. (a) An infinitely long string having one end at x = 0 is initially at rest on x-axis. The end x = 0 undergoes a periodic transverse displacement given by $A_0 \sin \omega t$, t > 0. Find the displacement of any point on the string at time t.
 - (b) Find the Fourier transform of slit function f(x) defined as:

$$f(x) = \begin{cases} 1/\epsilon & |x| \le \epsilon \\ 0 & |x| > \epsilon \end{cases}$$

1227