This question paper contains 4 printed pages.]

Your Roll No.

1230

B.Sc. (Hons.) / III

A

PHYSICS - PAPER - XX

(Physics of Materials)

Time: 3 Hours.

Maximum Marks: 38

(Write your Roll No. on the top immediately on receipt of this question paper.)

Question No. 1 is compulsory.

Attempt one question from each of the units.

- 1. Attempt any five of the following:
- $2\times 5=10$
- (a) Prove that the volumes of unit cells of a direct lattice and a reciprocals lattice are inversely proportional to each other.
- (b) Show that a five fold rotational symmetry is not possible in a crystal.
- (c) Prove that the number of normal modes of vibration in a monoatomic lattice of finite length is equal to the number of atoms in the lattice.

- (e) Dielectric constant of NaCl for d.c. field is 5.68 whereas its refractive index is 1.54 at visible wavelength. Explain why it is so?
- (f) Distinguish between conductors, semiconductors and insulators on the basis of band theory of solids.
- (g) Calculate the position of Fermi level at 300 °K temperature w.r.t. the intrinsic Fermi level for Si doped with 10¹⁶ In. atoms/cm³ assuming complete ionization of impurities.

Given, intrinsic carrier concentration = $1.45 \times 10^{10} / \text{cm}^3$ at 300 °K and Boltzmann constant K = 0.862×10^{-4} eV/K.

. UNIT - I

- 2. (a) Define Miller indices. Derive an expression for interplanar spacing between nearest (hkl) planes in a cubic lattice.
 - (b) Explain the term Packing Fraction.

 Calculate the packing fraction for (i) Simple

 Cubic, (ii) b.c.c; and (iii) f.c.c.
- 3. (a) Deduce Bragg's law $2\overrightarrow{K} \cdot \overrightarrow{G} + G^2 = 0$ for X-ray diffraction by crystal. The symbols have their usual meaning.
 - (b) Obtain the parameters for the first two Brillown zones of a square lattice of side a and draw the diagram.

.

3

4

3

1230

UNIT – II

		OIVII II	
4.	(a)	State the assumptions made in Einstein theory of lattice specific heat of solids. Derive formula for molar heat capacity of solids.	
	(b)	Describe the shortcomings of Einstein's theory and how was it modified by Debye?	2
5.	(a)	Give an account of quantum theory of paramagnetism for high and low temperatures.	4
·	- (b)	Discuss the B-H hysteresis loop for a ferromagnetic substance. Distinguish soft and hard ferromagnets.	•
	• ·	UNIT – III	
6.	(a)	Explain the term dielectric polarizability. Obtain an expression for local electric field at an atom in a dielectric medium.	
	(b)	Draw a diagram between frequency and total polarizability showing contribution of frequency ranging from microwave to ultraviolet.	,
7.	(a)	Deduce Clausius-Mossotti relation and obtain expression for Molar polarizability:	•
	(b)	Write a note on ferro-electricity and discuss P-E hysteresis loop.	

UNIT – IV

8. •	(a)	State Bloch's theorem. Obtain the energy spectrum of an electron in a one dimensional periodic potential. How does it leads to the formation of energy bands?	5
	(b)	Discuss the concept of effective mass. How does it vary with wave vector K?	2
9.	(a)	What is superconductivity? Distinguish between Type I and Type II superconductors	. 2
	(b)	Derive London's equation and obtain an expression for penetration depth.	. 5