This question paper contains 7 printed pages.]

Your Roll No.

1231

B.Sc. (Hons.) / III

A

PHYSICS - PAPER - XXI

(Electronic Devices: Physics and Applications)

Time: 3 Hours

Maximum Marks: 38

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt five questions in all.

Question No. 1 is compulsory.

Attempt one question from each Section.

Use of calculator (non-scientific) is allowed.

1. Attempt any four parts:

4 × 1 ½

(a) Discuss any two advantages and one disadvantages of FM over AM.

- (b) A light emitting diode (LED) formed from an alloy semiconductor has $E_g = 1.9$ eV. Find the wavelength of the emitted light when the diode is forward biased. (h = 6.63×10^{-34} J-sec)
- (c) Draw the waveform that will be shown in a CRO across a b

- (d) What is Noise? Mention any two sources of Noise in a transistor.
- (e) How does the junction capacitance of reversed biased p-n diode varies with applied voltage?
 - (f) Draw the h-parameter equivalent circuit for a transistor in CE mode.

SECTION - A

- 2. (a) State and prove Maximum power transfer theorem.
 - (b) Find the Thevenin equivalent circuit for the given network between A and B.

- 3. (a) For an unbiased p-n junction diode, sketch the variation of space charge, electric field and potential as a function of distance across the junction. Obtain the expression for potential barrier and widths of depletion layer.
 - (b) The reverse saturation current of a p-n junction diode is 5 μ A at 300 K. Find the voltage to be applied to obtain a forward current of 50 μ A. ($k_B = 1.38 \times 10^{-23}$ J/K).

3

5

5

SECTION - B

- 4. (a) Explain working of a diode detector circuit and sketch the output waveform. Obtain a relation between time constant RC of the circuit and modulating frequency.
- 6
- (b) A carrier wave of 100 watts is subjected to 50% amplitude modulation. Determine
 - (i) power of the modulated wave.
 - (ii) power contained in each of the side bands.
- (a) Obtain the expression for total collector current flowing through CE configuration of a transistor taking into account leakage current.

7

(b) With the help of a necessary circuit diagram, draw and discuss the drain (static) characteristics of an n-channel FET.

3

(c) Explain how is a zener diode used in voltage regulation under both varying input and varying load conditions.

SECTION - C

- 6. (a) Draw the circuit diagram of a two-stage
 R-C Coupled Amplifier. Draw the a.c.
 equivalent circuit at mid, low and high
 frequency. Calculate the voltage gain in the
 mid frequency region.
 - (b) An Amplifier has a voltage gain of 100.

 The feedback ratio is 0.04. Calculate
 - (i) the voltage gain with feedback.
 - (ii) the output voltage of the feedback amplifier for an input voltage 40 mV.
 - (iii) the feedback factor.

7. (a) Explain the need of biasing and stabilization in an amplifier. Draw and discuss the voltage divider bias circuit.
Derive an expression for its stability factor.

5

(b) Draw the load line for the following circuit, also locate the Q-point ($\beta = 100$).

SECTION - D

- 8. (a) Explain the operation of a Colpitt's oscillator with the help of a circuit diagram.

 Derive an expression for the frequency of oscillation and condition for sustained oscillation.
 - (b) A piezoelectric crystal used in a crystal oscillator is resonant at 450 kHz. For this frequency, its equivalent inductance and series resistance are 3.5 H and 9050 Ohm respectively. What is the Q value of the crystal?

2

- 9. (a) What is a relaxation oscillator? Draw and discuss the working of a UJT sweep generator and calculate the time period of oscillator.
 - (b) Draw the labelled circuit diagram of an astable multivibrator using BJT.2