B.Sc. (H) Physics / III
Electronic Devices: Physics and Application (Paper XXI)

Time: 3 Hrs. Max. Marks:	38
Attempt Five questions in all.	
Question No. 1 is compulsory. Attempt One question from each section	
 Attempt any five: (a) State the Thevenin network theorem. (b) Explain the differences between photodiode and LED. (c) Explain with the help of circuit diagram the action of a transistor as a switch. (d) Give the advantages of negative feedback in amplifiers. (e) Draw and briefly explain the frequency response of an RC coupled amplifier. (f) Explain the piezoelectric effect. 	· 10
SECTION A	
 2(a) State and prove superposition theorem. (b) Define the terms Mesh and Node for a circuit. (c) Show a four terminal network can be converted into equivalent T and π networks in to of open circuit and short circuit impedances. 	3 2 terms 2
3. For an unbiased pn junction, sketch the variation of the space charge, electric field an potential as a function of distance across the junction. Derive the mathematical equation Barrier potential and Barrier Width.	
SECTION B	
4(a) How does a Half wave rectifier (HWR) work?(b) Define ripple factor and efficiency of a rectifier. Derive their expressions for HWR.	2 5
5(a) Derive a relation between Z and Y parameters of a two port network.(b) What is UJT? Draw its structural diagram, its equivalent circuit and characteristic curves.	3
SECTION C	
6(a) Draw the circuit of a Class-B push-pull amplifier and describe its operation. Find the expression for the maximum efficiency. (b) What is a DC load line and Q-point of an amplifier? And how is the operating point determined?	ne 5 2
7(a) Explain the need of biasing and stabilization circuits in an amplifier. How can it be achieved best by self bias method? (b) A transistor uses self bias method. R_1 = 50 k Ω , R_2 = 10k Ω , R_E = 1 k Ω . If V_{CC} = 12 Find I_C for V_{BE} = 0.1 V	4 V. 3
SECTION D	
8(a) Explain the working of Colpitts Oscillator. Derive the expression of frequency of it oscillations.(b) Distinguish between a table and monostable multivibrator.	's 5 2
9(a) Explain the CE amplitude modulator circuit.(b) Explain the working of the diode detector for demodulation.	4