2463

BSc(H) Physics III Year

PAPER XIX

Statistical Physics

Time: 3 Hours Maximum Marks: 38

* Do five questions in all. Question no.1 is compulsory. Attempt one question from every unit.

1. Attempt any five of the following.

- (2×5)
- (a) When a room is swept and dust particles collected in a small area, the number of available microstates decreases from e^{10^5} to e^{10^2} . What is the decrease in entropy? Does sweeping a room clean violate the Second Law of Thermodynamics?
- (b) Can negative temperatures exist in a system with energy levels going to infinity? Explain.
- (c) Calculate the number of ways of arranging four bosons in seven different states.
- (d) What is ultra-violet catastrophe with reference to the Rayleigh Jean's Law?
- (e) Does a collection of quantum harmonic oscillators at thermal equilibrium satisfy Equipartition theorem? Explain.
- (f) Show that the electron gas in Silver with number density 5.8×10²⁸ electrons/m³ is strongly degenerate at room temperature.
- (g) Discuss the role of optical cavity in lasers?
- (h) What are the Ortho and Para Hydrogens? What are their relative contributions to the specific heat of Hydrogen?

Unit I

- 2. (a) What is the thermodynamic definition of temperature? Explain the emergence of negative temperatures in a system of magnetic dipoles with spin half in a magnetic field.
 - (b) How are negative temperatures achieved in laboratory? (5, 2)
- 3. Find the partition function of a diatomic hetero-nuclear gas including rotational degrees of freedom.

 Determine the contribution to the specific heat of this gas from rotational motion at high and low temperatures. (7)

Unit II

4. Derive Saha's ionisation formula for a gas of Hydrogen atoms, ions and electrons. Discuss one of its applications. (6,1)

6. What is Bose-Einstein condensation? Find the critical temperature below which an ideal gas shows Bose-Einstein condensation. Derive and plot fraction of degenerate Bosons in the ground state and excited states as a function of temperature. (7) 7. a) Give Bose's derivation of Planck's black body radiation formula. b) Find the energy and specific heat of a photon gas. (4,3) Unit IV 8. Show that the electron gas in white dwarf stars is strongly degenerate and relativistic. Assume	between frequency	number of modes of vibration per unit volume for radiation in an enclosed volume $v + dv$ is $8\pi v^2/c^3 dv$. (4,3)
6. What is Bose-Einstein condensation? Find the critical temperature below which an ideal gas shows Bose-Einstein condensation. Derive and plot fraction of degenerate Bosons in the ground state and excited states as a function of temperature. (7) 7. a) Give Bose's derivation of Planck's black body radiation formula. b) Find the energy and specific heat of a photon gas. (4,3) Unit IV 8. Show that the electron gas in white dwarf stars is strongly degenerate and relativistic. Assume	•	Unit III
shows Bose-Einstein condensation. Derive and plot fraction of degenerate Bosons in the ground state and excited states as a function of temperature. (7) 7. a) Give Bose's derivation of Planck's black body radiation formula. b) Find the energy and specific heat of a photon gas. (4,3) Unit IV 8. Show that the electron gas in white dwarf stars is strongly degenerate and relativistic. Assume	C. When in Dogo E	
state and excited states as a function of temperature. (7) 7. a) Give Bose's derivation of Planck's black body radiation formula. b) Find the energy and specific heat of a photon gas. (4,3) Unit IV 8. Show that the electron gas in white dwarf stars is strongly degenerate and relativistic. Assume	6. What is bose-E	oin condensation. Derive and plot fraction of degenerate Bosons in the ground
7. a) Give Bose's derivation of Planck's black body radiation formula. b) Find the energy and specific heat of a photon gas. (4,3) Unit IV 8. Show that the electron gas in white dwarf stars is strongly degenerate and relativistic. Assume		
b) Find the energy and specific heat of a photon gas. (4,3) Unit IV 8. Show that the electron gas in white dwarf stars is strongly degenerate and relativistic. Assume	state and excited s	derivation of Planck's black body radiation formula.
8. Show that the electron gas in white dwarf stars is strongly degenerate and relativistic. Assume		
8. Show that the electron gas in white dwarf stars is strongly degenerate and relativistic. Assume electron number density is 10^{36} /m ³ and and temperature is 10^{7} K. Find pressure generated by suc		Unit IV
electron number density is 10^{36} /m ³ and and temperature is 10^{7} K. Find pressure generated by suc) 1 1 1 1 1 A
	9. Show that the	electron gas in white dwarf stars is strongly degenerate and relativistic. Assume
	8. Show that the	density is $10^{36}\mathrm{/m^3}$ and and temperature is $10^7\mathrm{K}$. Find pressure $$ generated by such $$
	electron number	density is 10^{36} /m ³ and and temperature is 10^7 K. Find pressure generated by such $\frac{1}{2}$
relativistic electrons.	electron number gas. (7)	density is 10 ³⁶ /m ³ and and temperature is 10 ⁷ K. Find pressure generated by such a such
	electron number of gas. (7) 9. (a) Derive the relativistic electron	density is 10^{36} /m ³ and and temperature is 10^7 K. Find pressure generated by such a expression for the energy and entropy of a strongly degenerate system of non ons.
(5,2)	electron number of gas. (7) 9. (a) Derive the relativistic electron	density is 10 ³⁶ /m ³ and and temperature is 10 ⁷ K. Find pressure generated by such a expression for the energy and entropy of a strongly degenerate system of non one. One of the Third Law of Thermodynamics explain the unattainability of absolute zero.